
Introducing Adversarial Training to Improve the Performance of Model in
Natural Language Processing Domain

Anchun Gui1, Jiashuo Sun2, Junyu Chen2 and Tao Chen1

1315202111540{41,05}
2230202111539{64,18}

Abstract

Recently, the concept of adversarial training is getting more
and more attention in the field of deep learning. Adversar-
ial training is not only used in the Computer Vision (CV)
domain, it also can be applied in the Natural Language Pro-
cessing (NLP) domain, and obtain good performance. In this
paper, we proposed some methods that can be used for ad-
versarial training in the NLP downstream tasks. We give the
definition and detailed implements of each methods and com-
pare with their advantages and disadvantages. We used Ques-
tion Answer (Q&A) matching as our downstream task, the
experimental results demonstrate the effectiveness of adver-
sarial training, which significantly improves the generaliza-
tion ability of the model. Furthermore, adversarial training
can be used in many tasks which indicates its expansibility.

1 Introduction
Adversarial samples (Goodfellow, Shlens, and Szegedy
2014) is the input samples which were deliberately added
subtle perturbation. A good adversarial samples can use sub-
tle perturbation to make a difference on results. The basic
principle of adversarial training (Szegedy et al. 2013) is to
construct some adversarial samples by adding perturbation
and feed into the model for training to improve the robust-
ness of the model when encountering adversarial samples.
While adversarial training boosts the robustness, it is widely
accepted by computer vision researchers that it is at odds
with generalization, with classification accuracy on non-
corrupted images dropping as much as as 10% on CIFAR-
10 (Krizhevsky, Hinton et al. 2009), and 15% on Imagenet
(Deng et al. 2009). Surprisingly, people observe the opposite
result for language models, showing that adversarial training
can improve both generalization and robustness. Although
adversarial training can make the model perform better, it
lengthen the model’s training time.

However, in the natural language processing domain, the
input is a discrete sequence of words, generally presented
in the form of one-hot vector. If the perturbation is directly
performed on the raw text, then the scale and direction of
the disturbance may be meaningless. Because the set of
high-dimensional one-hot vectors does not admit infinitesi-

Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

mal perturbation, we can use the perturbation on continuous
word embeddings instead of discrete word inputs.

Specifically, since large-scale pre-trained models (e.g.
BERT (Devlin et al. 2018)) are gradually applied to nat-
ural language processing tasks (e.g information extraction
(Wan and Xiao 2008), text classification (Baker and Mc-
Callum 1998)), adversarial training can be simply applied to
the Embedding layer of the pre-trained model. Since the ad-
versarial training is to update the parameters by accumulat-
ing the gradient in backpropagation (Rumelhart, Hinton, and
Williams 1986), we can only use Deep Learning technol-
ogy instead of traditional Machine Learning. The commonly
used adversarial training methods are FGM (Fast Gradient
Method), PGD (Projected Gradient Descent), FreeAT (Free
Adversarial Training), YOPO (You Only Propagate Once)
and FreeLB (Free Large-Batch) (Goodfellow, Shlens, and
Szegedy 2014; Madry et al. 2017; Shafahi et al. 2019; Zhang
et al. 2019; Zhu et al. 2019), we will introduce in detail in
related work.

In this paper, we use QA matching as our downstream
task to demonstrate the effictiveness of adversarial training.
Intelligent QA matching infers the precise needs of users by
understanding the deep semantics of natural language ques-
tions raised by users, and does not need to be re-screened by
users when obtaining results, which improves the efficiency
of information acquisition while improving user experience.
We will demonstrate results based on experiments.

2 Related Work
Recently, adversarial training (Goodfellow, Shlens, and
Szegedy 2014) has gradually become a hot research topic
and received more and more researchers’ attention. Adver-
sarial training is implemented by adding random minor dis-
turbance into the input of model, which may fools model’s
prediction. Actually, it is the addition of those disturbances,
which force model adjusting weight to adapt to this change,
thus the robustness of the model is promoted by this special
training procedure.

We know that the general principle of adversarial training
is to optimize the following Max-Min objective function,

min
θ
E(x,y)∼D

[
max
∆x∈Ω

L(x+ ∆x, y; θ)

]
where,D refers to data set, x, y refers to the input and output



Figure 1: Adversarial samples

of model respectively, θ represents the parameters of model,
∆x represents the disturbance mixing with x, L(x, y; θ) cor-
responding to objective function. For the objective function:

• Maximize the inner layer disturbance means to find the
disturbance that maximizes the loss function. Simply
speaking, the tiny disturbance should make the neural
network as confused as possible.

• The outer layer is the minimization formula for the opti-
mization of the neural network, that is, when the distur-
bance is fixed, we train the neural network model to min-
imize the loss of training data so that making the model
have certain robustness to adapt to the disturbance.

A lot of efforts have been made to determine the pertur-
bation. In terms of the motivation behind the research, the
current research directions on adversarial training can be di-
vided into the following two aspects.

Gradient Disturbance FGM (Miyato, Dai, and Goodfel-
low 2017) proposed to regard the model’s backpropaga-
tion gradient as the perturbation ∆ mix with the model’s
input. Specifically, we can make the perturbation ∆x =
ε∇xL(x, y; θ). It is worth noting that ∇xL(x, y; θ) is nor-
malized in case of avoiding ∆x is expanding beyond expec-
tation. Generally,

∆x = ε
∇xL(x, y; θ)

‖∇xL(x, y; θ)‖
or

∆x = εsign(∇xL(x, y; θ))

the latter normalization Method should be called FGSM
(Goodfellow, Shlens, and Szegedy 2014).

Since FGM calculates the adversarial perturbation by ad-
justing ε, the results obtained may not be optimal, and there
is also a linear assumption issue in FGSM and FGM. There-
fore, in order to solve these problems, PGD (Madry et al.
2017) was proposed. PGD, which based on multiple iter-
ations, projects the disturbance to the specified range and
approaching the optimal disturbance gradually.

gt = ∇Xt
(L(fθ(Xt), y))

where gt represents the loss in t time step.

Xt+1 =
∏
X+S

(Xt + ε(gt/‖gt‖))

The input at time step t + 1 is calculated from the input
at time step t. Notice that if the disturbance goes beyond a
certain range, it maps back to the specified range S.

Efficiency In the process of calculating the PGD (Madry
et al. 2017), both the gradient of parameters and the gradient
of output will be calculated in each time step. However, only
the gradient of parameters is used in gradient descent, while
only the gradient of input is used in gradient elevation, which
is actually a great waste. A natural question is, can we use
both the gradient of the parameter and input simultaneously?
This is the core idea of FreeAT (Shafahi et al. 2019). The
gradient calculation formula of the model is

gθ = E(x,y)∈B [∇θl(x+ δ, y, θ)]

In addition, the adversarial gradient of the model can be cal-
culated by

gadv = ∇xl(x+ δ, y, θ)]

To be specific, although FreeAT still adopts PGD train-
ing strategy, that is, K times of gradient is calculated for
each min-batch sample, but the gradient obtained each time
is used to update both disturbance and parameters.

The starting point of YOPO (Zhang et al. 2019) is to
use neural network to reduce the computation amount of
gradient calculation. From the perspective of PMP, anti-
disturbance is only related to the first layer of neural net-
work. Therefore, the paper proposes to fix the front base
layer, calculate the gradient of the first layer only, and up-
date the disturbance accordingly.

Like FreeAT, FreeLB (Zhu et al. 2019) intends to use both
gradients more efficiently. However, different from FreeAT,
the parameters of a FreeLB are not updated every time the
gradient is raised.

gt = gt−1 +
1

K
E(Z,y)∈B [∇θL (fθ (X + δt−1) , y)]

In this way, the parameters of a FreeLB are updated by us-
ing the gradient of the parameters accumulated after K steps.



Compared with PGD, FreeLB simplifies the gradient calcu-
lation procedure. Unfortunately, compared with the gradi-
ent calculation of FreeAT, the improved computational effi-
ciency of FreeLB is not obvious.

However, it is worth mentioning that the advantage of
FreeLB is not only in efficiency, but in its excellent effect.
Since FreeLB uses the gradient of multi-step accumulation
to update, the gradient estimation is more accurate.

3 Proposed Solution
In this section, we mainly demonstrate that how to introduce
adversarial training into the practical problems we need to
deal with. Here, we firstly describe the downstream task to
be solved in brief, the domain-specific (real estate industry
in particular) question and answer matching task, which in-
volves scenarios such as: when customers are interested in
some houses, they will ask relevant questions to the relevant
real estate brokers, then the corresponding real estate bro-
kers will answer those questions. Thus, we can access the
multiple rounds of dialogue data.

Our goals are as follows: given a fragment of communica-
tion of a certain length, the fragment contains the questions
of a client and subsequently broker replies with several mes-
sages. One of these subsequent broker messages needs to be
identified as the answer to the client question. The difficul-
ties and challenges of this issue are:

1. Random and fragmented for some chatting fragments,
and language styles vary from region to region.

2. The model is required to have good generalization and be
able to deal with various short and long dialogues.

Our modeling process for this problem can be roughly di-
vided into the following five parts:

3.1 Problem Definition
Given a dataset including M data samples, where the i-th
data item (x(i), y(j), ŷi)

K
j=1 consists of a customer question

(source text) x(i), a set of agent answers y(j) and the label ŷi.
Specifically, every data item is divided into K part where K
is the number of agent answers corresponding to customer
questions, and j-th sample item is one of the agent answers.
Under this setting, a question and answer matching model
is to learn the mapping from the source text x(j) to the tar-
get sequence y(j) and predict whether the x(j) and y(j) are
matching.

3.2 Data Preprocessing
Since the original data comes from the actual scenes in the
industry, we need to clean the original data firstly, such as,
deduplication, data type transformation and incomplete data
completion, etc. Generally speaking, taking the data after
some rules cleaning as the input of the model can reduce the
influence of data noise on the model on the one hand, and en-
able the model to mine the potential features inside the data
on the other hand. Mastering these features may play a great
role in improving the generalization ability of the model.

3.3 Model Building
In this work, we choose Nezha (Wei et al. 2019), a open
source language model from Huawei, as our backbone net-
work. The model structure is shown in Figure 2. Therefore
we need to preprocess the original data to meet the input
form of Nezha model. Specifically, we splice the client’s
question with the corresponding broker’s reply, which is seg-
mented by a special token [SEP] in vocabulary. It is a very
common form of the input in BERT-like models.

After the processed data as the input into the back-
bone network, we can get the vector representation of the
“query-reply” from feature extractor. Then, in order to judge
whether the answer matches the question, we need to add a
classifier on the top of the backbone network. Here, we sim-
ply use a multilayer perceptron (MLP) whose output size is
the same with the number of categories in this problem.

3.4 Adversarial Training
The above two parts can be considered standard proce-
dures for ordinary natural language processing. In this part,
we need to introduce adversarial training into the training
process of the model. Specifically, our approach is as fol-
lows: firstly, calculate the gradient of embedding layer cor-
responding to the loss objective of the model, then perform
some operations, which are mentioned in related work, on
the gradient with the original embedding layer as a distur-
bance. Finally, we need to add the resulting small perturba-
tions to the embedding layer weights and perform gradient
descent.

3.5 Training
Given the set of data pairs (x(i), y(j), ŷi)

K
j=1, the loss

function of the question and answer matching is cross
entropy loss:

Loss =
1

N

∑
i

−(yi × log(pi) + (1− yi)× log(1− pi))

where N is the word sequence length of target output se-
quence, and pi is the model prediction.

4 Experiments
4.1 Dataset
We use the dataset collected by CCF&BAKE1 from various
online questions and answers, which contains approximately
6K samples, each of which contains one customer question
and multiple agent answer. Then, a validation set containing
500 samples will be selected from the remaining examples.
In order to evaluate our proposed method, we test on 14K
samples dataset from CCF&BAKE. The statistic informa-
tion of which are summarized in Table 1.

4.2 Baselines and Evaluation Metrics
For question and answer matching task, we compare our
model with basic NEZHA model, basic Transformer model
and Transformer model with FGM adversarial training

1https://www.datafountain.cn/competitions/474/datasets



Figure 2: Model architecture

Questions Replys
training set 6,000 21,586
validation set 500 1,830
test set 14,000 53,758

Table 1: The statistics of customer questions and agent an-
swers on the dataset.

method (Transformer-AT) as well. We split each data item
into multiple training examples, each of which only contains
one question and one answer. The baselines are the follow-
ing state-of-the-art encoder-decoder models:
• NEZHA represents a Transformer-based model, an im-

proved model of the BERT(Devlin et al. 2018) model.
• Transformer(Vaswani et al. 2017) represents a

Attention-based encoder-decoder model.
• Transformer-AT represents a standard Transformer

model with FGM adversarial training method.
The implementation of Transformer is base on open source
tool OpenNMT2.For adversarial training methods, we use
FGM, PGD and FreeAT and add them to the NEZHA model.
For model evaluation, we adopt F-measure (F1) as our eval-
uation metrics for the question and answer matching task.
For evaluation, exact match is used for determining whether
the predictions are correct.

2https://github.com/OpenNMT/OpenNMT-py

4.3 Implementation Details
We set maximal length of source sequence as 128, 20 for
target sequence of model output, and 20 for the decoders
of all baselines. We choose the 21,129 frequently-occurred
Chinese words as our vocabulary. The dimension of the
word embedding is 128,The dimension of hidden state in
encoder, decoder is 768. The word embedding is used in
pre-trained NEZHA model. Words masked probably is 0.15.
We use Adagrad as optimization function with learning rate
= 0.00005. All the baseline models are trained on a single
Tesla P100.

4.4 Results and Analysis
In this section, we present the results of whether to add
the adversarial training and different methods of adversar-
ial training, respectively. The results of whether to add the
adversarial training are shown in Table 2.

Models F1 score
Transformer 0.783
Transformer-AT 0.788
NEZHA 0.797
NEZHA-AT 0.804

Table 2: The results of whether to add the adversarial train-
ing on the dataset.

We first compare our proposed method with the baseline



models.The results show that our model with adversarial
training performs better than basic model without adversar-
ial training in question and answer matching task.We fur-
ther analyze the experimental results of different adversarial
training methods on NEZHA model. Table 3 shows the re-
sults of different methods of adversarial training.

Models F1 score
NEZHA 0.797
NEZHA-FGM 0.804
NEZHA-PGD 0.804
NEZHA-FreeAT 0.806

Table 3: The results of different methods of adversarial train-
ing on the dataset.

It can be observed that different methods of adversarial
training can improve the performance of matching, com-
pared to the basic NEZHA model. Meanwhile, FreeAT is
the best adversarial training method in our experiment, and
achieve 0.9 % average gain than basic NEZHA model.

5 Conclusion
In this paper, we propose to introduce adversarial training
into a natural language processing downstream task-specific
(i.e., question and answer matching), so that the model can
learn some sophisticated features and enhance the robust-
ness of the model. The final goal is improving the perfor-
mance of the model on task-specific further. We tested our
proposed model on QA datasets about the real estate indus-
try, which is a common problem in real world scenarios.
Finally the experimental results showed that we achieved
a competitive results compared to other basic models and
further the limited and shortcomings of our proposed model
will be explored in the future.

References
Baker, L. D.; and McCallum, A. K. 1998. Distributional
clustering of words for text classification. In Proceedings
of the 21st annual international ACM SIGIR conference on
Research and development in information retrieval, 96–103.
Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. Imagenet: A large-scale hierarchical image
database. In 2009 IEEE conference on computer vision and
pattern recognition, 248–255. Ieee.
Devlin, J.; Chang, M.-W.; Lee, K.; and Toutanova, K. 2018.
Bert: Pre-training of deep bidirectional transformers for lan-
guage understanding. arXiv preprint arXiv:1810.04805.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and harnessing adversarial examples. arXiv preprint
arXiv:1412.6572.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards deep learning models resistant to
adversarial attacks. arXiv preprint arXiv:1706.06083.
Miyato, T.; Dai, A. M.; and Goodfellow, I. J. 2017. Adver-
sarial Training Methods for Semi-Supervised Text Classifi-
cation. In 5th International Conference on Learning Repre-
sentations, ICLR 2017, Toulon, France, April 24-26, 2017,
Conference Track Proceedings. OpenReview.net.
Rumelhart, D. E.; Hinton, G. E.; and Williams, R. J. 1986.
Learning representations by back-propagating errors. na-
ture, 323(6088): 533–536.
Shafahi, A.; Najibi, M.; Ghiasi, A.; Xu, Z.; Dickerson,
J.; Studer, C.; Davis, L. S.; Taylor, G.; and Goldstein,
T. 2019. Adversarial training for free! arXiv preprint
arXiv:1904.12843.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, L.; and Polosukhin, I. 2017. At-
tention Is All You Need. CoRR, abs/1706.03762.
Wan, X.; and Xiao, J. 2008. Single Document Keyphrase
Extraction Using Neighborhood Knowledge. In AAAI, vol-
ume 8, 855–860.
Wei, J.; Ren, X.; Li, X.; Huang, W.; Liao, Y.; Wang, Y.; Lin,
J.; Jiang, X.; Chen, X.; and Liu, Q. 2019. NEZHA: Neural
Contextualized Representation for Chinese Language Un-
derstanding. CoRR, abs/1909.00204.
Zhang, D.; Zhang, T.; Lu, Y.; Zhu, Z.; and Dong, B. 2019.
You only propagate once: Accelerating adversarial training
via maximal principle. arXiv preprint arXiv:1905.00877.
Zhu, C.; Cheng, Y.; Gan, Z.; Sun, S.; Goldstein, T.; and Liu,
J. 2019. Freelb: Enhanced adversarial training for natural
language understanding. arXiv preprint arXiv:1909.11764.


	Introduction
	Related Work
	Proposed Solution
	Problem Definition
	Data Preprocessing
	Model Building
	Adversarial Training
	Training

	Experiments
	Dataset
	Baselines and Evaluation Metrics
	Implementation Details
	Results and Analysis

	Conclusion

