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Abstract

Review-based recommender systems (RRS) have received an
increasing interest since reviews greatly enhance recommen-
dation quality and interpretability. However, existing RRS
suffer from high computational complexity and biased rec-
ommendationThe two problems make them inadequate to
handle real recommendation scenarios. Though there exist
studies working on addressing each issue seperately, none of
them consider solving these problems together under a uni-
fied framework. LUME is a novel framework that addresses
these problems simultaneously. LUME uses multi-teacher
ensemble and debiased knowledge distillation to aggregate
knowledge from multiple pre-trained RRS, and generate a
small, debiased student recommender. Extensive experiments
on various real-world benchmarks demonstrate that LUME
successfully tackles the two problem and has superior perfor-
mance than the state-of-the-art knowledge distillation based
recommender systems.

Introduction

Recommender Systems (RS) are powering our everyday life.
RS help in picking our favorite movies to watch, desirable
products to purchase, interested news feed to follow, and
even our next friends to connect to. Reviews are valuable
auxiliary feedback in RS, as they provide explanations on
various aspects of a product and guide users towards pur-
chase. Due to the widespread prevalence of online reviewing
sites, review-based RS (RRS) have attracted a great amount
of attention (Aggarwal 2016). Though existing RRS provide
high-quality and interpretable recommendations (Lyu et al.
2021), they still suffer from several problems.

P1: High Computational Complexity. The state-of-the-
art RRS typically adopt deep neural networks with a great
number of models from parameters. For example, the num-
ber of parameters of RRS models are much larger than the
non-review-based matrix factorization. The high computa-
tional complexity leads to unaffordable inference time and
storage cost, and it is difficult to deploy these cumbersome
RRS in practice. Therefore, it is beneficial to develop a
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lightweight RRS model, while retaining the recommenda-
tion accuracy as complex RRS models.

P2: Biased Recommendations. Various types of biases
naturally exist in RS (Chen et al. 2019), which profoundly
affects the quality of recommendations. For instance, the re-
cently found sentiment bias (Lin et al. 2021) leads to unsat-
isfied recommendations for certain users. The RRS generate
more significant errors on critical users (i.e., users who write
fewer positive reviews) than on positive users (i.e., users
who post more positive reviews). Another example is the
well-known popularity bias (Wei et al. 2021). RRS perform
much worse on long-tail items than on popular items. And as
time goes by, the bias will accumulate and cause Matthew’s
phenomenon. Therefore, to deliver fair treatments for the
whole user/item universe, debiasing techniques are indis-
pensable to RRS to increase the degraded performance on
affected groups of users and items.

In the literature, model compression and debiasing have
been studied for RS. However, each of these works addresses
one problem only. Lacking consideration of any of the afore-
mentioned problems will result in sub-optimal, ineffective
and/or inefficient RRS models that are inadequate to handle
real recommendation scenarios.

Recently, knowledge distillation (KD) (Guo et al. 2019)
has attracted increasing attention due to its ability to produce
a much smaller student model while retaining the ability of
the original large teacher model. Inspired by recent studies
on KD, we plan to present a Lightweight Unbiased Multi-
teacher Ensemble (abbreviated as LUME) model to make
consistent, high-quality and unbiased review-based recom-
mendations.

LUME trains a HeadTeacher model to capture the correla-
tions among teachers (i.e., individual RRS) and transfers the
common knowledge shared within multiple teachers to the
lightweight student model via a KD process with different
losses tackle the problems faced by existing RRS. Finally,
the lightweight student model is used for the review-based
recommendation task.

The major contributions of this paper are summarized as
follows:

* We design a novel framework, LUME, which simultane-
ously addresses the three problems of high computational
complexity, and bias in RRS.



* Unlike most existing KD-based RS that only learn from
one teacher model, LUME compresses and accelerates
multiple teachers by fusing common knowledge and
adapting it to the student model.

Related Work
Review-based RS.

The research of Recommender Systems (RS) for alleviating
information overload problem has a long history. Review-
based RS, utilizing available review texts in RS to provide
high-quality recommendations with better interpretations, is
an important branch of RS. Traditional review-based RS
have utilized latent semantic analysis, LDA and latent fac-
tor model, to model reviews and provide better recommen-
dations. Recently, deep neural networks and deep learning
based techniques, including CNN, LSTM, Auto-encoder,
Transformer and the attention mechanism, have significantly
facilitated the development of review-based RS.

Bias in RS.

Although RS have been successfully deployed in many ap-
plications, the ubiquitous bias problem in RS is still hard to
handle (Chen et al. 2019). In the literature, several biases
have been observed in RS:

Selection Bias (van der Maaten and Hinton 2008): the ob-
served ratings in RS are not a representative sample of all
ratings.

Conformity Bias (Liu, Cao, and Yu 2016): users in RS rate
similarly due to various social factors but doing so does not
conform with their own preferences.

Position Bias (Hinton, Vinyals, and Dean 2015): users
tend to interact with items in higher position of the recom-
mendation list even if they are not relevant.

Popularity Bias (Wei et al. 2021): RS prefer to recom-
mend popular items more frequently than their original pop-
ularity in the data.

Exposure Bias (Liu et al. 2020): users are only exposed to
part of the data and unobserved interactions do not always
indicate dislike.

Sentiment Bias (Lin et al. 2021): RS models make signif-
icantly more accurate recommendations on users/items hav-
ing more positive feedback than on users/items having more
negative feedback.

The first debias category of these works is utilizing causal
inference to discover the actual cause of an user-item inter-
action in RS (Guo et al. 2019). There are other works trying
to improve the design of the model architectures so that bi-
ases can be mitigated (Chen et al. 2018). Lastly, unlike above
works which debias in the training phase, some works (Seo
et al. 2017) design unbiased metrics for evaluating RS better
in the testing phase.

Knowledge Distillation in RS.

Knowledge distillation (KD) (Guo et al. 2019) learns a small
student model from one or multiple large teacher models to
reduce model complexity. In RS community, several KD-
based methods have been proposed. (Wang et al. 2018) de-
signs the ranking distillation framework that trains a smaller

student model to learn to rank items from both the train-
ing data and the supervision of a larger teacher model. (Lee,
Park, and Lee 2021) improves the ranking distillation by
sampling items in the soft target according to their rankings.

Interestingly, KD not only helps reduce the complexity of
RS models, but also brings additional benefits to RS, e.g.,
extracting the core and useful information from the larger
teacher model to avoid inaccurate recommendations (Liu
et al. 2019).

Proposed Solution
Overview

Fig. 1 provides an overview of LUME that mainly consists
of two parts. Given a set of pre-trained RRS models (i.e.,
teachers), LUME first learns a HeadTeacher model to fuse
the knowledge from multiple teachers and further improves
the quality of common knowledge, which is contained in
HeadTeacher, using label blending and teacher selection on
the training set, and adaptive model update on the validation
set. Then, LUME trains the student model using the guid-
ance from the HeadTeacher via the teacher loss £; and the
student loss L, mitigates biases via a debiasing loss AL,
and strengthens generalization via two generalization losses
Ly and L,. The overall loss for training student model is
defined as:

L= ML+ AsLs + XLy + ALy + AL, (D
where Ay, A5, Az, Ay and A, are loss weights.

Teacher Models (Pre-trained)

Figure 1: Overview of LUME.

Multi-teacher Ensemble

To reduce the high computational complexity of review-
based RS, LUME follows the idea of KD. A vanilla KD
method uses the logits of a large deep model as the teacher
knowledge to guide the learning of the student model. Dif-
ferent from existing KD-based RS that leverage a single-
teacher architecture, LUME uses a multi-teacher architec-
ture. Multi-teacher architecture is more suitable for real
review-based recommendation scenarios since the perfor-
mance of different RRS models is “diverse”. The multiple,
complex “’teacher” models are pre-trained on the same set of
training samples, and then LUME transfers the knowledge
from multiple teacher models and trains a student model
with less parameters. This way, the student model will not
be easily misled by a single teacher if the teacher performs
poorly in some cases.



Suppose that we have a number of teacher models, where
each teacher model ¢ € T~ gives the prediction X L ; for the
rating X, ; of auser u € U on an item ¢ € Z. The teacher
models are first independently pre-trained on the training set
DS, and they are fixed during the training phase of the later
KD process.

Now, the question is how to fuse the knowledge from
multiple teachers. A natural approach is to use an ensemble
model Mge to integrate the predictions of multiple teach-
ers, and make one prediction for a sample:XS ;- Ensemble
learning, which combines the insights of multiple machine
learning models to facilitate accurate decisions, has been ex-
tensively studied. It is questionable whether abnormal pre-
dictions from some teachers should be incorporated in train-
ing the ensemble model. To overcome the above problem,
we propose the multi-teacher ensemble to generate a Head-
Teacher.

Consider a label blending step which traverses the train-
ing set DS to fuse outputs from multiple teachers, and re-
moving low-quality teacher predictions. A label (¢, u,?) is
assigned for each teacher ¢ on every prediction X f” to indi-
cate whether the prediction should be utilized in training the
HeadTeacher. If the deviation between the prediction and the
actual rating, i.e., | X!, — X? |, is larger than a predefined

threshold &, X t . will be considered as abnormal and it will
not benefit the ensemble learning.

Then, the HeadTeacher takes the output of each teacher
model )A(f“, if I(t,u,4) = 1, and make a fused prediction,
ie., Xﬁz = Mee(concate(l(t,u, Z)XZZ, t € T))where
concate(-) is a concatenated vector. The HeadTeacher uses
a two-layer feed-forward network (FFN). In the first layer,
predictions from individual teachersare aggregated to gener-
ate the probability of different rating values. In the second
layer, different rating values are aggregated to formed the
predicted rating.

Zui = W1 (concate(l(t,u,i))&iji,t eT))+b, @

Xoi= w3 Zy.i + ba, 3)

where 2z, ; € R>*! indicates the probability distribution of

ratings, wy, ws, by, by € R®*! are learnable weight vector
and bias vector, respectively.

Furthermore, we use a subset of the testing data as a val-
idation set DV to improve the generalization of LUME,
i.e., adaptive model update step. We derive the gradient of
the HeadTeacher parameters in the validation set and carry
a small number of trials to update the ensemble model.
The motivation behind it is similar to model-agnostic meta-
learning: since RRS will be updated using a gradient-based
method on new data (including low-rating reviews) that they
can not learn well (i.e., poor generalization), LUME is de-
signed to find model parameters that are sensitive to new
data so that small changes in the model parameters will pro-
duce large improvements on the loss function.

Knowledge Distillation
Formally, a student model is denoted as M °, parameterized
with ©%, which makes predictions X, ; = M§.(P,, Q;) for

each user profile P, and item profile Q;.

Given the historical feedback, we construct a user pro-
file P, by concatenating all reviews written by user u. An
embedding vector is used to represent each review token,
and thus a user profile is defined as P, € RN«*Nw_where
N, is the maximal number of reviews that LUME includes
in a user profile, and N,, is the number of the tokens that
LUME considers for each review from its beginning. Sim-
ilarly, we consruct an item profile (); by concatenating all
reviews written on item 4.

The design goal of the student model in LUME is to make
it as lightweight as possible. In RRS, the recommendation
model usually consists of an encoding module that learns
feature representations of textual reviews and a prediction
module that generates outputs based on user, item, and re-
view features.

There are a variety of choices in designing a lightweight
architecture with an encoding module and a prediction mod-
ule for the student model. We experimentally find that Con-
volutional Neural Network (CNN), as an encoding module,
generates stable performance, since CNNs capture proxim-
ity information in short review texts. To reduce the compu-
tational complexity, we use the same CNN module for both
user profile and item profile.

The prediction module in the student model is a one-layer
FFN that predicts the ratings in one to five stars. The student
model in LUME in KD is optimized via a teacher distillation
loss L; and a student loss L. The teacher distillation loss
is used to help the student model to mimic the behavior of
the HeadTeacher. Recall that the HeadTeacher contains two
layers, where the output of the first layer (i.e., logits 2, ; in
Eq. 2) carries ensemble knowledge from various individual
teacher models, by predicting the probability of one to five
rating stars, i.e., 2y ;. = Pr(X,; = ¢), c € {1,2,3,4,5}.
However, the student model outputs numerical rating values
instead of discrete rating categories. Thus, the cross-entropy
loss used in many KD systems is infeasible for RRS.

To transfer the ensemble knowledge in M€ to M *, LUME
uses the logits as supervision signals and optimizes the MSE
loss between logits and the student model’s output as the
teacher loss L;:

Li= Y Olcaic—Xi)% @

welU,iel, X, ;#0 ¢

where ¢ = {1, 2, 3,4, 5} refers to the different discrete rating
stars in the RS, 2, ; . is the logit output from the first layer
of HeadTeacher on the neuron for ¢ (Eq. 2).

The student loss £, in LUME is defined between the
ground truth rating value X,, ; and the output of the student
model to encourage the student model to make accurate pre-
dictions:

L= Z (Xviz -

welU,iel, X, ;70

Xui)?, )

Debiasing

In the following, we use the sentiment bias (Lin et al. 2021),
which exists in most RRS, as the example to illustrate how
LUME mitigate biases.



Sentiment bias is defined as the divergence between rec-
ommendation performance on positive users/items and neg-
ative users/items. The positive and negative users/items are
decided based on an unsupervised sentiment analysis tool
like TextBlob . which returns a sentiment polarity value for
each user/item profile.

We rank users by their sentiment polarity values so
that we can extract the top 10% users as positive users
U™, and the bottom 10% users as negative users U~
Similarly, we have positive items Z* and negative items
71~ . Then, the user sentiment bias and the item sentiment
bias for a RS model can be obtained as BU(RS) =
E(RS,U~,I) — E(RS,U",T),and BI(RS) = E(RS,U,
I~ —E(RS,U, I'"), respectively. E is the evaluation metric,
e.g., MSE.

Intuitively, to reduce sentiment bias, the student model
must be enhanced to provide better predictions on negative
users/items. Lin et al. explain that increasing the embedding
variance on negative items can effectively mitigate senti-
ment bias. (Lin et al. 2021) Thus, LUME poses constraints
on the embedding vectors. We propose E,(t) to evaluate
teacher model ¢, based on how much the embedding vectors
of negative items spread out in the batch containing samples

S:
E,(t) = >

Xu,i€S & i€~

et — et(S)]3, ©6)

where et(S) is the mean embedding vector in the set S.

When the best teacher model z, in terms of the small-
est F, is selected, we can use the output of model x (i.e.,
X ) to guide the student model and reduce sentiment bias
on flegative items via the following debiasing loss:

= Y (XY X8 )
WEUET— Xy 170

Generalization

If teacher models do not agree with each other, we increase
the uncertainty of student model’s output. We first select
samples O in the batch (i.e., X, ; € S) using the following
evaluation function:

Bo(u,i) = > (XL, = Xu:)%, (8)

teT Xu,ies

where X, ; is the average output of all teacher models for
the sample X, ;. If the variance of teacher model outputs
(i.e., E,(u,1)) is large, LUME use the entropy-based regu-
larizer £, to increase the uncertainty of the final output:

Ly = > > p(ui,c)logp(u,i,c), (9)

uEUIEL™  Eo(u,i)>¢ c=1

where ¢ denotes a predefined threshold to judge whether
teachers agree or not. Simply connecting a FFN layer with
softmax to the prediction layer of the student model, we
can obtain p(u,i,c¢) = Pr(X,,; = c), which denotes the

"https://textblob.readthedocs.io

Table 1: Statistics of the data.

Dataset #Users | #Items | #Reviews | Sparsity
Food 14,683 | 8,715 151,253 | 99.8818
Kindle 68,225 | 61,936 982,618 | 99.9767
Games 826,769 | 50,212 | 1,324,753 | 99.9968
Electronics 192,405 | 63,003 | 1,689,188 | 99.9861
Yelp 1,070,074 | 36,490 | 3,766,145 | 99.9904

probability that user u gives item ¢ a rating of ¢, where
0 <p(u,i,c) <1,> . plu,i,c) =1,and c € {1,2,3,4,5}.

To further enhance the generalization to low-value rat-
ings, we present the error function (t), in Eq. 10, to eval-
uate if a teacher model ¢ provides unbiased predictions on
low ratings in a set of ratings S:

Y (XL - X (0

Xu,ies-,Xu,i<3

E,(S,t) =

When the best teacher model z, in terms of the small-
est B, is selected, we can use the output of z (i.e., X*)
to strengthen the student model’s performance on low-value

ratings:
L= )

wEU €T, Xy i #0

N L2
(X —Xai) - (11)

Experiments
Experiment Setup

Datasets. We use five public datasets, including four Ama-
zon review dataset (McAuley and Leskovec 2013) and the
Yelp dataset 2. We apply 5-core preprocessing on datasets
to make sure each user/item has at least five ratings. We use
8:1:1 training/validation/test split. The statistics of the data
are shown in Tab 1.

Teacher Models and Other Competitors. Five state-of-
the-art RRS models are used as teacher models and competi-
tors: DeepCoNN (Zheng, Noroozi, and Yu 2017), MPCN
(Tang and Wang 2018), NARRE (Chen et al. 2018), DAML
(Li et al. 2020) and D_ATTN (Kang et al. 2020). We use
public code 3, with the default parameter settings, for the
five RRS. Other baselines include simple RRS and state-of-
the-art KD-based RS: CNN, CNN+KD, CNN+KDgate (Zhu
et al. 2020) and BD+BPR (Kweon, Kang, and Yu 2021). We
use the public implementation for BD *.

Recommendation Performance

We use MSE and NDCG @k to evaluate the performance for
rating prediction and top-k recommendation, two prevalent
tasks in RS (Aggarwal 2016). By default, we report the result
when k = 5.

Tab. 2 shows the performance of different methods. For
each method, we also calculate the ratio of its performance
with respect to LUME’s performance, i.e., “ratio/LUME”.

Zhttps://www.yelp.com/dataset
3https://github.com/noveens/reviewsdrec
*https://github.com/WonbinKweon/BD_WWW2021



Table 2: MSE and NDCG @5 of different methods. Bold en-

tries suggest that LUME outperforms the competitor.

Table 4: User sentiment bias and Item sentiment
different methods. Bold entries suggest that LUME outper-
forms the competitor.

bias of

DataSet Games Food Kindle Electronics Yelp
Model BU BI BU BI BU BI BU BI BU BI
DeepCoNN 1.4471 0.8090 | 1.2958 0.8749 | 1.0811 0.7665 | 1.5338 1.2952 | 1.5279 1.2712
ratio/LUME | 1.0815  1.0239 | 1.0249 1.0812 | 1.0737 1.0879 [ 1.0411 1.0382 | 1.0565 1.1087

D_ATTN 1.5247 0.7582 | 1.3244 0.9047 | 1.0723 0.7633 | 1.4579 1.2635 | 1.5448 1.2599
ratio/LUME | 1.1395  0.9596 [ 1.0475 1.1180 | 1.0650 1.0833 [ 0.9895 1.0128 | 1.0682 1.0988
MPCN 23533 1.7431 | 1.6758 1.3502 | 1.7521 1.0606 | 1.9555 1.5603 | 2.0117 2.3487
ratio/LUME | 1.7588  2.2062 | 1.3255 1.6686 | 1.7401 1.5053 | 1.3273 1.2507 | 1.3910 2.0484
NARRE 1.3435  0.8244 | 1.2759 0.8067 | 1.0024 0.7044 | 1.4132 1.1890 | 1.4379 1.1538
ratio/LUME | 1.0041  1.0434 [ 1.0092  0.9969 | 0.9955 0.9997 [ 0.9592  0.9531 | 0.9943 1.0063
DAML 1.3454 0.8119 | 1.2999 0.8279 | 1.2250 0.8485 | 1.7306 1.4007 | 1.7473 1.8656
ratio/LUME | 1.0055 1.0276 | 1.0282 1.0231 | 1.2166 1.2042 | 1.1746  1.1228 | 1.2082 1.6271
CNN 1.4757 0.8516 | 1.2978 0.8648 | 1.0744 0.7477 | 1.5561 1.3249 | 1.4931 1.2093
ratio/LUME | 1.1029  1.0778 | 1.0265 1.0687 | 1.0670 1.0612 [ 1.0562 1.0620 | 1.0324 1.0547
CNN+KD 13854 0.7916 | 1.2759 0.8311 [ 1.1032  0.7I81 | 1.4976 1.2640 [ 1.4762 1.1936
ratio/LUME | 1.0354 1.0019 | 1.0092 1.0271 | 1.0956 1.0192 [ 1.0165 1.0132 | 1.0207 1.0410
BD+BPR 0.5308 09731 [ 0.1134 0.9188 | 1.9816 1.2120 [ 2.3084 1.9884 | 1.7702  0.8750
ratio/LUME | 0.3967 1.2316 [ 0.0897 1.1354 | 1.9680 1.7201 | 1.5668 1.5939 | 1.2240 0.7631
CNN+KDgate | 1.4828 0.8238 | 1.4152 0.9844 | 1.0658 0.7523 | 1.6582 1.3365 | 1.5485 0.6008
ratio/LUME | 1.1082 1.0427 | 1.1194 1.2165 | 1.0585 1.0677 | 1.1255 1.0713 | 1.0707 0.5240
LUME 1.3380 0.7901 | 1.2643 0.8092 | 1.0069 0.7046 | 1.4733 1.2475 | 1.4462 1.1466

DataSet Games Food Kindle Electronics Yelp

Model MSE NDCG | MSE NDCG | MSE NDCG | MSE NDCG | MSE NDCG
DeepCoNN 1.1581 0.7857 | 0.9942  0.8905 | 0.6962 0.8863 | 1.2912 0.8836 | 1.3294 0.8262
ratio/LUME | 1.0247  0.9015 | 1.0131  0.9965 | 1.0334 1.0051 | 1.0163 1.0063 | 1.0203  1.0208

D_ATTN 1.1687 0.8534 | 1.0060 0.8173 | 0.6960 0.8900 | 1.2906 0.8867 | 1.3498 0.8112
ratio/LUME [ 1.0341  0.9792 | 1.0252  0.9146 | 1.0331 1.0093 | 1.0I58 1.0098 | 1.0360 1.0022

MPCN 1.4325 07924 | 1.1966  0.8109 | 0.9077 0.8531 | 1.4075 0.8426 | 1.5145 0.7388
ratio/LUME [ 1.2675  0.9092 | 1.2194 09075 | 1.3473  0.9675 | 1.1078  0.9596 | 1.1624  0.9128

NARRE 1.1189  0.8686 | 0.9669 0.8921 | 0.6612  0.8929 | 1.2588 0.8944 | 1.2958 0.8272
ratio/LUME [ 0.9900 0.9967 | 0.9853 0.9983 | 0.9814 1.0126 [ 0.9908 1.0186 | 0.9946 1.0220

DAML 1.1155 0.8546 | 0.9672  0.8911 [ 0.7213 0.8872 | 1.3240 0.8890 | 1.3840 0.8138
ratio/LUME [ 0.9870 0.9806 | 0.9856 0.9972 | 1.0707 1.0061 [ 1.0421 1.0124 | 1.0622 1.0054

CNN 1.1608  0.8625 | 0.9933 0.8924 | 0.6910 0.8781 | 1.2908 0.8721 | 1.3165 0.8019
ratio/LUME | 1.0271  0.9897 | 1.0122  0.9987 | 1.0257 0.9958 | 1.0160 0.9932 | 1.0104  0.9907
CNN+KD 1.1377 0.8731 | 0.9845 0.8856 | 0.6751 0.8815 | 1.2732 0.8757 | 1.3035 0.8074
ratio/LUME | 1.0066 1.0018 | 1.0033  0.9910 | 1.0021  0.9997 | 1.0021 0.9973 | 1.0005 0.9975

BD+BPR 3.8520 0.7569 | 3.5768 0.7698 | 2.8416 0.7730 | 3.2652 0.7894 | 3.2651 0.7021
ratio/LUME | 3.4082  0.8685 | 3.6450 0.8615 | 4.2179  0.8766 | 2.5700 0.8990 | 2.5060 0.8674
CNN+KDgate | 1.1416  0.8569 | 0.9855 0.8918 [ 0.7009 0.8804 | 1.2874 0.8760 | 1.3125 0.7995
ratio/LUME | 1.0101  0.9832 | 1.0043  0.9980 | 1.0404 0.9984 | 1.0133  0.9976 | 1.0074 0.9878

LUME 1.1302  0.8715 | 0.9813 0.8936 | 0.6737 0.8818 | 1.2705 0.8781 | 1.3029 0.8094

Table 3: Statistics of model parameters.

Method DeepCoNN D_ATTN MPCN NARRE DAML
#Parameters | 30,187,864 | 30,626,334 | 32,365,264 | 31,596,293 | 30,098,429
ratio/LUME 11.9868 12.1609 12.8514 12.5460 12.3086

Method CNN CNN+KD BD+BPR | CNN+KDDgate LUME
#Parameters | 2,518,432 2,518,442 1,169,700 2,518,752 2,518,432
ratio/LUME | 1.0000 1.0000 0.4645 1.0000 1.0000

We can observe that: (1) LUME provides superior rec-
ommendations in terms of MSE and NDCG @5 than teacher
models. In most datasets, the teacher models generate worse
recommendations, i.e., higher MSE with ratio/LUME >1.0
and lower NDCG with ratio/LUME <1.0. In the remain-
ing datasets, LUME generates comparable results, i.e., ra-
tio/LUME approaches 1.0. (2) LUME consistently outper-
forms other KD-based competitors for both rating prediction
and top-k recommendation.

Model Complexity

To validate whether KD is able to reduce the complexity of
RRS, we report the number of parameters, which includes
word embedding vectors and all internal variables, for dif-
ferent methods in Tab. 3. We can observe that the number of
parameters of each KD-based method is an order of mag-
nitude fewer than that of each teacher model. Compared
among KD-based methods, we can see BD+BPR has the
least parameters because it is not a Review-based RS and
its performance is signifcantly worse than LUME’s as illus-
trated in Tab. 2. This observation suggests that LUME has
achieved a good balance between model complexity and rec-
ommendation quality.

Biases and Generalization

Following (Lin et al. 2021), we adopt the user sentiment bias
(BU) and the item sentiment bias (BI) to evaluate the degree
of sentiment bias in RRS:

BU = Z (Xu,i - Xu,i)2 - Z (Xuz - Xu,i)2>
uelU— i€l ueUt iel

(12)

BI = Z (Xu,l - Xu,i)2 - Z (Xu,z - Xu,i)2,
uel,iel— wel,iel+

13)

where the notations have been described in Debiasing sub-
section.

Lower BU and BI suggest more fair and unbiased recom-
mendations. As shown in Tab. 4, we can see that LUME pro-
vides lower BU and BI than teacher models and competitors
in most datasets, i.e., ratio/LUME >1.0. The improvement
is particularly significant on MPCN. By comparing LUME
with CNN+KD which does not use the debiasing loss, we
verify that debiasing loss can effectively reduce the senti-
ment bias. Note that, by further analyzing the results, we
find that although BD+BPR produces lower BU, its results
are meaningless because BD+BPR produces “equally” poor
rating predictions (i.e., high MSE) for all users (See Tab. 2).

In summary, we can conclude that LUME provides con-
sistent high-quality and unbiased recommendations for dif-
ferent cases including the hard-to-predict low-rating re-
views.

Conclusion

Analyzing valuable information contained in online textual
reviews can greatly enhance recommendation quality and
interpretability. Consequently, review-based recommender
systems have received increased research interest. However,
review based recommendation systems face two severe chal-
lenges: high computational complexity and biased recom-
mendations. This paper presents LUME, a Lightweight Un-
biased Multi-teacher Ensemble for review-based recommen-
dation, which address the three challenges simultaneously.
The knowledge distillation process of LUME is specially
designed to handle biase in review based recommender sys-
tems. Extensive experiments on various real-world bench-
marks demonstrate that LUME can generate more accurate
recommendation performance with much fewer model pa-
rameters.
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