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Abstract

MicroRNA (miRNA) and long non-coding RNAs (IncR-
NAs) are non-coding RNAs (ncRNAs), and their interaction
plays an important role in biological processes. Computa-
tional methods, such as machine learning and many bioin-
formatics tools, can predict potential miRNA-IncRNA in-
teractions, which are of great significance for studying its
mechanism and biological functions. More and more animal
RNA interaction predictors have been studied, but due to dif-
ferences, they are not reliable in the IncRNA between ani-
mals and plants. Establishing reliable plant predictors is a ba-
sic task, especially cross-species plant predictors. This paper
proposes a deep learning model (MixLMI), which is a model
based on multi-scales information enhancement for predict-
ing miRNA-IncRNA interactions in plants. The use of com-
plex feature fusion and multi-scale convolutional long short-
term memory network to enhance sample information on fea-
tures, scales and models verifies the positive impact of multi-
scales information enhancement on prediction performance.
Experiments show that MixLMI has good prediction perfor-
mance and strong generalization ability, and can be used for
cross-species prediction.

Introduction

MicroRNAs (miRNAs) are small molecules similar to
SiRNA. It is non-coding RNAs like long non-coding
RNAs.They regulate gene expression and play an important
role in the regulation of the growth and development of ani-
mal and plant cells.At the same time, the interaction between
miRNA and IncRNA also plays an important role in biolog-
ical processes.It may play a regulatory role in the growth
of plants,miRNA can target IncRNA and trigger the gener-
ation of phased small interfering RNAs that affect the seed
germination in Triticum aestivum (T.aestivum) (Guo et al.
2018). IncRNA can accelerate the pro-liferation of primary
cardiomyocytes by targeting miRNA(Yang et al. 2020a).
IncRNA can inhibit the expression of miRNA in a variety
of plants by adsorbing miRNA(Zhou et al. 2020). With the
development of high-throughput sequencing technology, a
large number of miRNAs and IncRNAs can be obtained with
the existing technology, but the interaction between miR-
NAs and IncRNAs has been confirmed to be very limited,
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and many of its mechanisms and biological functions are
still unclear. In order to understand the interaction mecha-
nism between miRNA and IncRNA in plants, it is essential
and important to determine the interaction between them.

Biological experiments are an important means to dis-
cover the interaction between miRNAs and IncRNAs, but
this is expensive and time-consuming. With the rapid de-
velopment of information technology, the emergence of ma-
chine learning and various bioinformatics tools makes it pos-
sible to predict potential RNA, and can save a lot of time
and cost. RIblast is a powerful RNA interaction predictor
and its last version is released in November 2019(Fukunaga
and Hamada 2017). LncRRIsearch is a web server, which
can quickly predict small-scale IncRNA-RNA interactions
in human and mouse(Fukunaga et al. 2019).

Howeverthese methods were designed specifically for an-
imals, not applicable to plants. Specifically, for animals,
RNA polymerase II transcribes the NcRNAs, while RNA
polymerase II, IV, and V are in charge of this in plants
(Movahedi et al. 2015). What’s more, IncRNA has low se-
quence conserved, especially in distant species such as an-
imals and plants (Noviello et al. 2018). Therefore, animal
predictions are unreliable in plants. It is hoped that a limited
number of plant species can be used to train prediction mod-
els of plant species. Therefore, it is necessary to make cross-
species prediction of plants. Four predictors of miRNA-
IncRNA interactions in plants have been reported (Bouba
et al. 2019),(Kang et al. 2020),(Zhang et al. 2020),(Song
et al. 2020). They made important contributions, but three of
them did not validate predictive performance across species.
Although the published model PmliPred(Kang et al. 2020)
has successfully achieved cross-species prediction, it has
only been tested on two dicotyledons (Arabidopsis thaliana
and lycopene). Since PmliPred was trained with dicotyle-
donous plant data, its generalization ability to more plants,
especially monocotyledons, needs to be further verified. Pm-
liPred still has room for improvement in terms of perfor-
mance and generalization capability. In addition, we have
not found any reports of predictors of miRNA-IncRNA in-
teractions in plants. It is an urgent task to establish a reli-
able plant predictor, especially a cross-species plant predic-
tor. Cross-species prediction requires predictors with strong
generalization ability. Ensemble learning has strong gener-
alization ability and has been applied in bioinformatics (Liu



et al. 2018). Deep learning model is a hot spot of current re-
search, showing good performance (Zhang et al. 2019), and
can be used as the basic model of integrated learning. There
are two common approaches to training deep learning mod-
els with biological data. One is to encode the data as the
input of training (Zhang et al. 2020), the other is to extract
features from the data as the input of training (Peng et al.
2019). It solved the problem of low sequence preservation
of IncRNA in different plants and achieved good results in
cross-species prediction. Inspired by this, we think that fea-
ture extraction of different values may contain more sample
information than encoded data. For example, one-hot coding
uses matrices with only five numbers to represent different
RNA sequences, while k-mer features can represent RNA se-
quences with normalized vectors or matrices with different
values.

By introducing the method above, an integrated deep
learning model MixLMI based on multi-level information
enhancement is proposed to predict miRNA-IncRNA inter-
actions in plants. It integrates complex features through non-
linear transformation of feature extraction (Dai et al. 2019).
It takes into account the sequence features and structural
features and enhances the information at the feature level.
Conv-LSTM, as the basic model, converts the fused complex
feature vectors into three matrices of different scales.(Shen,
Deng, and Huang 2019).

Related Work

In recent years, considerable effort has been devoted to de-
veloping computational methods for identifying associations
in multiple biological data sets. At present, in the prediction
of the interaction between miRNA and IncRNA, many re-
searchers have used shallow machine-learning methods to
construct the prediction model through feature selection.
Rlblast is a powerful RNA interaction predictor and its
last version is released in November 2019(Fukunaga and
Hamada 2017). It uses suffix arrays to discover seed re-
gions, and then extends seed regions based on an RNA
secondary structure energy model. LncRRIsearch is a web
server, which can quickly predict small-scale IncRNA-RNA
interactions in human and mouse(Fukunaga et al. 2019).
GCLMI(Huang et al. 2019) is an end-to-end model that
combines the technologies of graph convolution and auto-
encoder for miRNA-IncRNA interaction prediction. A hy-
brid sequence feature-based model, named LncMirNet, is
pro-posed to predict miRNA—IncRNA interactions via deep
convolutional neural networks(Yang et al. 2020b). Pm-
liPred(Kang et al. 2020) proposed a new method based on
hybrid model and fuzzy decision, PmliPred, that was ap-
plied to plant miRNA-IncRNA interactions prediction. It
hybridizes CNN-BiGRU and REF, utilizes raw sequences and
manually extracted features. PmliPred obtains better per-
formance and generalization ability compared with exist-
ing methods. By the biological experiments, several new
miRNA-IncRNA interactions in S.lycopersicum are suc-
cessfully identified from the candidates predicted by Pm-
liPred, which further verifies its effectiveness. Zhang et
al.(Zhang et al. 2020) introduce the plant miRNA-IncRNA

interaction prediction with the ensemble of CNN and In-
dRNN they uses the two-stage convolutional neural network
to automatically learn sequence features and detect func-
tional domains of nucleotide sequences, and then uses the
two-layer independently recurrent neural network (IndRNN)
to learn the long-term dependence in functional domains to
classify data. It obtains above 96 percent accuracy on Zea
mays test set and better results on other plant data sets. This
shows its good performance and generalization ability.

Materials and Methodology
Datasets

As there is no public plant miRNA-IncRNA interaction
database available, we plan to construct a new credible
dataset of variety of plants, using previous method(Kang
et al. 2020). For data sources, miRNA and IncRNA are
downloaded from miRBase 22.1(Kozomara, Birgaoanu, and
Griffiths-Jones 2019) and GreenNC v1.12(Gallart et al.
2016). By referring to the used species in the training set
of RNAplonc(Negri et al. 2019), the samples of A. thaliana,
Glycine max (G. max), Oryza sativa (O. sativa), and P. tri-
chocarpa are selected to be a training-validation set. For con-
structing balanced sample test setsthe samples of Brachy-
podium distachyon (B. distachyon), Medicago truncatula
(M. truncatula), and Solanum tuberosum (S. tuberosum) are
selected, respectively. Detailed information about the con-
structed datasets is shown in Table 1.

Fusing Complex Features

The construction of complex features is mainly realized by
nonlinear transformation of features. In 2019, Dai et al. (Dai
et al. 2019) proved that the construction of complex features
has the potential to be applied to LMI prediction problems
when calculating and predicting ncRNA-protein interaction
prediction. But there are still two problems. First of all, this
article uses K-mer to construct complex features, they con-
tain limited sample information, but also need to consider
structural features. Secondly, it also mentioned four com-
mon strategies when constructing complex features: geo-
metric average, harmonic average, PowRP and PowPR. But
they are not all applicable to LMI prediction problems. For
miRNA, because it is a short sequence, its characteristic
value must be 0, and the same is true for IncRNA. So the
last three strategies are meaningless to them. For the geo-
metric average strategy, as long as there is a feature value
of 0 in miRNA and IncRNA, the constructed complex fea-
ture is also 0. This will make the constructed feature ma-
trix sparse and have many identical complex feature val-
ues, thereby losing a lot of Information. Here, we propose
arithmetic averaging to construct complex features, so as
to avoid information loss, while fusing these complex fea-
tures to characterize miRNA-IncRNA pairs, which greatly
enhances the ability to characterize information. The RNA
sequence is composed of four bases: adenine (A), thymine
(T), cytosine (C) and guanine (G). (Uracil (U) in miRNA
is converted to T for the convenience of feature extraction.)
K-mers are subsequences of length k included in biologi-
cal sequences, and g-gap represents a discontinuous base



Table 1: Details of datasets

Dataset Species Type Number of positive sample  Number of negative sample
Training-validation set
1 A .thaliana Dicotyledon 1200 1200
2 G.max Dicotyledon 1200 1200
3 O.sativa Monocotyledon 1200 1200
4 P.trichocarpa Dicotyledon 1200 1200
Test sets
1 B.distachyon DMonocotyledon 500 500
2 M.truncatula Dicotyledon 500 500
3 S.tuberosum  Monocotyledon 500 500
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Figure 1: Overview of the MixLMI

sequence. (Zhang et al. 2021) In this article, we extracted
I-mer, 2mer and 3mer, as well as 1-gap, 2-gap and 3-gap
sequences.

The secondary structure of RNA is obtained by RNAfold,
which is indicated by dots and brackets(Lorenz et al. 2011).
The sliding window is used to match each feature along the
sequence or structure character. Calculate the frequency f of
each feature and normalize it to:

f=

c
nm=t(L—-1-1) M

Among them, c is the number of matched feature types,
n is the number of matched feature types, m is the maxi-
mum length of the matched feature types, L is the length
of the sequence, and 1 is the length of the sliding window.
The complex features can be constructed by the arithmetic
averaging strategy as:

efi; = (mfi;‘ Lfi)

mf, is the i-th feature frequency of miRNA, [ f, is the j-th
feature frequency of IncRNA, and cf, ; is the constructed
complex feature value. For sequence features and structural
features, their k-mer and g-gap features can be obtained re-
spectively:
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cfysi; and cf .5 ; can be obtained from sequence features,
and c¢fy,; ; and cf 4, ; can Obtained from structural fea-
tures. They are fused into a 11860-dimensional vector to de-
scribe the sample as

Fef = [Kmerseq, Ggapse,, Kmergy, Gga’pstr] (7
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Figure 2: Architecture of ConvLSTM. Two convolution lay-
ers with 32 and 64 filters are used, followed by Pool-max,
which is a pooling layer with max pooling scheme. Dropout
is applied in the last fully connected layer with rate of 0.5,
respectively.

Multi-scale ConvLSTM Model

LSTM is a special kind of RNN, which is used to solve the
problem of explosion decomposition and explosion during
training in the process of long sequence. The performance of
the model combined with LSTM and CNN tends to perform
better(LeCun, Bengio, and Hinton 2015),(Vidal and Krist-
janpoller 2020). As shown in Fig.1. The mixed feature vec-
tor is input to the base model in the form of a matrix. Use
Eq.(8) to extract feature maps

F, — ReLU (X 0% k;) ®)

F, is the eth feature map, X is the input fusion feature ma-
trix with different scales, k. is the e-th convolution kernel



with different scales, and is the convolution operation. The
maximum pooling is used to reduce the dimensionality of
the feature map, and the flatten layer is used to compress
the output of the previous layer. A fully connected layer is
used as the classifier, and the ”Adam” optimizer is used in
the experiment, where the classification loss function uses
cross-entropy loss. At the same time, we used droupout to
prevent the model from overfitting. The output of the model
is a 2-d [p,1-p] vector, where p is the probability of an in-
teraction between miRNA and IncRNA in the sample. In the
training process, the model parameters are updated through
the backward propagation of the model.

We believe that only a single-scale feature map is not
enough for model learning(Shen, Deng, and Huang 2019),
so we will use multi-scale features with scales of 2 x
5930, 3 x 3954, 4 x 2965, where the empty elements are
zero-padded. Pass the obtained features of different scales
through the ConvLSTM module which its architecture is
shown in Fig.2, and perform an averaging operation on the
final output to obtain the final confidence probability that
there has been interaction between miRNA and IncRNA in
the sample.

By using multiple scales, the diversity of feature pictures
can be mined, and the feature information of the data can be
preserved as much as possible.

Results and Discussion

Performance Evaluation Criteria

Sensitivity, specificity, accuracy, F1 score, and geometric
mean of sensitivity and specificity (GEP) are used as the per-
formance evaluation criteria:

Sensitivity = TP}—]—iPFN )
Specificity = % (10)
Aceuracy = 75 Jz:z]\j 1 ?}Z Ty Y
Flscore = orp +21:«C§ +FN (12
GEP = \/TPT—FPFN - TNTJ]rV o P

where true positive (TP) is the number of correctly pre-
dicting miRNA—-IncRNA interaction, false negative (FN) is
the number of incorrectly predicting miRNA—-IncRNA inter-
action, false positive (FP) is the number of incorrectly pre-
dicting that there has no interaction between miRNA and
IncRNA, and true negative (TN) is the number of correctly
predicting that there has no interaction between miRNA and
IncRNA. In addition, AUC value from ROC curve is also
used for evaluations.

Table 2: Results of 10-fold cross validation,we list the av-
erage, maximum, and minimum accuracy of models among
the ten folds.

Model Average  Maximum  Minimum
Accuarcy(%) Accuarcy(%) Accuarcy(%)

MixLMI 85.8 87.1 85.1
MixLMI(kmer) 85.2 86.9 84.5
MixLMI(GM) 85.3 86.7 83.7
LMI(2-5930) 85.3 87.3 83.5
LMI(3-3954) 85.4 86.2 84.8
LMI(4-2965) 85.1 86.7 82.3

Table 3: Results of 5-fold cross validation, the comparison
between MixLMI and MixLMI(residual) which add skip-
connection in the ConvLSTM of MixLMI.

Model Average Maximum  Minimum
ode Accuarcy(%) Accuarcy(%) Accuarcy(%)
MixLMI 85.5 87.2 84.4
MixLMI(residual) 85.3 87.5 83.6
Experiments

In order to verify the advantages of the fused complex fea-
ture module in MixLMI, we use k-mer complex feature vec-
tors to replace the original MixLMI fused complex feature
vectors, denoted as MixLMI(k-mer).At the same time, we
think that the arithmetic mean strategy used to build the
complex features in MixLMI can also have other options.
Here we choose the typical geometric mean strategy as a re-
placement, denoted as MixLMI (GM).

MixLMI uses three scales of 2 x 59307, 3 x 3954”, and
”4 x 29657, and uses these three scales to fully mine the
potential information in the data, and merge the three kinds
of information together to make predictions. In order to ver-
ify the efectiveness of multiple scales in MixLMI, we de-
signed three single-scale base models of MixLMI, denoted
as LMI(2-5930), LMI(3-3954), LMI(4-2965), each of them
use one scale to make predictions.

The experimental results are given in the table 2. It can
be seen that although the peak accuracy of MixLMI (k-mer)
is only slightly lower than that of MixLMI, its average ac-
curacy is significantly lower than that of MixLMI, which
verifies the advantages of fused complex feature module in
MixLMI. For MixLMI (GM), the accuracy fluctuates greatly
in 10 folds, and the minimum accuracy is lower than oth-
ers. The overall performance is not as good as MixLMI. We
think this is because arithmetic mean strategy can produce
more consistent features and improve the stability of the
model. For the three single-scale models, the accuracy of
LMI (2-5930) fluctuates greatly. In some folds, it can exceed
the performance of MixLLMI, but it also has quite low accu-
racy in other folds. In terms of average accuracy, it is slightly
higher than LMI (4-2965) and not as good as MixLMI. LMI
(3-3954) has less fluctuations in accuracy, and the average
accuracy is the highest among the three single-scale models.
LMI (4-2965) performed poorly in both the minimum ac-



Table 4: Results of the predictors on balanced sample test sets.

Test set Predictor  Sensitivity(%) Specificity(%) Accuracy(%) FI1 score(%) AUC

B.distachyon Riblast 53.53 82.87 67.78 62.42 NA
LncMirNet 87.53 2.31 45.62 60.64 0.4024
CIRNN 84.62 84.29 86.8 85.8 0.9357
MixLMI 93.73 80.71 86.98 86.95 0.9683

M.truncatula Riblast 42.81 92.42 68.76 58.82 NA
LncMirNet 87.72 6.36 45.82 61.74 0.4572
CIRNN 75.32 70.72 72.72 73.59 0.8063
MixLMI 84.52 82.84 84.81 84.77 0.9071

S.tuberosum Riblast 42.31 88.32 65.89 57.82 NA
LncMirNet 92.83 3.69 46.34 63.9 0.4591
CIRNN 85.24 63.83 75.73 77.58 0.8307
MixLMI 80.12 81.82 80.64 80.7 0.9011

curacy and the average accuracy. In general, MixLMI inte-
grates three scales for prediction, which is a certain improve-
ment compared to the single-scale model. However, we also
found that although LMI (2-5930) uses a more extreme scale
setting, it can also compete with MixLMI in terms of peak
accuracy.

Inspired by ResNet(He et al. 2016), we also tried to add
skip-connection to the model. More specifically, we add
skip-connection in the LSTM layer of ConvLSTM, denoted
as MixLMI (residual).In the experiment, in order to show the
effect of skip-connection, we adopted 5-fold cross valida-
tion. The experimental results are listed in Table 3. The high-
est accuracy of MixLMI (residual) is higher than MixLMI,
and the average accuracy is comparable to MixLMI. How-
ever, the minimum accuracy of MixLML (residual) is lower
than MixLMI, and we think this may be related to the train-
ing method.

MixLMI is compared with state-of-the-art predictors on a
balanced sample test set. Compared predictors include RI-
blast(Fukunaga and Hamada 2017), LncMirNet(Yang et al.
2020b) and CIRNN(Zhang et al. 2020), which are repre-
sentatives of RNA interaction, miRNA-IncRNA interaction
and miRNA-IncRNA interaction in plants, respectively. To
make the results more objective, MixLMI and CIRNN sep-
arately made 10 independent predictions for each test set to
obtain the average results. Rlblast and LncMirNet are en-
capsulation tools and training models respectively, which di-
rectly output prediction results with miRNA and IncRNA se-
quences as inputs.The results of these predictors are shown
in Table 4. As can be seen from Table 4, RIblast has the
highest specificity against M. amputate and M. tuberosity,
followed by M. spikelet. Its sensitivity was the worst in the
three test sets, which adversely affected its accuracy and F1
score. LncMirNet had the highest sensitivity to truncated
spikelets and late spikelets, followed by double spikelets.
Its specificity is unacceptable, which greatly reduces its ac-
curacy and F1 scores. Its AUC value was the worst of the
three test sets. In b. Diachyon’s test set, CIRNN had the
best specificity, with its accuracy and F1 score slightly lower
than MixLMI and far better than RIblast and LncMirNet,
with specificity greater than 84 percent. In the other two test
sets, except for the sensitivity of tuberose test set, the results

of CIRNN did not reach 80 percent. In the three test sets,
the AUC value of CIRNN takes the second place. MixLMI
achieved the best sensitivity on B. Diachyon’s test set, and
the best accuracy, F1 scores, and AUC values on all three
test sets. In other cases, the results were above 80 percent, al-
though not the best. These results suggest that Rlblast tends
to predict miRNA-IncRNA interactions in samples without
interaction, LncMirNet predicts a large number of false pos-
itive samples, and CIRNN does well at predicting individual
plants, but is not satisfied with predicting more plants. In
general, MixLLMI is the most reliable predictor.

Conclusion

In this paper, we propose an multi-scales information en-
hancement (MixLMI) for plant miRNA-IncRNA interac-
tion prediction. With strong generalization ability, MixLMI
achieves well performance than PmliPred in cross-species
prediction. Being beneficial to the exploration of plant bio-
logical functions, this method may provide valuable refer-
ences for related research. In the future, we will train more
base models and build a powerful predictor using ensem-
ble pruning technology. Beyond that, the contribution of our
research to database construction is also worth expecting
as there is currently no plant miRNA-IncRNA interaction
database.
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