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Abstract

In this paper, we present multi-stream CNN based accented
english automatic speech recognition system. Automatic
Speech Recognition (ASR) task where the non-native En-
glish speakers have various accents reduces the accuracy of
ASR system. In order to solve this problem, we have made
a lot of attempts. For DNN-HMM hybrid system, we tried
several acoustic models (AM) and chose Multistream CNN.
Then we explored various speaker/accent embeddings, for ex-
ample, i-vector or x-vector, to further improve the accuracy of
accented ASR systems. Experiments showed that using em-
beddings which capture the accent/speaker-relevant informa-
tion as auxiliary inputs can significantly improve the accu-
racy of accented ASR system. Finally, we trained a TDNN-
LSTM language model for lattice rescoring to get better re-
sults. Compared with our baseline system, we achieved rel-
ative word error rate (WER) improvements of 40.6% and
35.6% on the development set and evaluation set respectively.

Introduction

The standard English ASR system has been able to obtain
a high recognition accuracy rate and meet the commercial
requirements of certain scenarios. However, numerous sci-
entific research suggest that accent effects the recognition
rate of ASR system in a large extent. Due to the inconsis-
tency of the accent itself, the variability of speech speed and
phoneme pronunciation, and the scarcity of accented speech
data, the accented English recognition is still a challenging
subject.

The traditional acoustic model employed the parameter-
adaptive GMM-HMM model which is based on statistical
learning methods, but the low efficiency rate and poor ro-
bustness limit its further application. With the rise of deep
neural network(DNN:Ss), it is found that DNNs have stronger
representation and modeling capabilities than GMM. In
(Hinton et al. 2012), a contextual DNN-HMM hybrid sys-
tem was proposed and then applied on five large-vocabulary
continuous speech recognition tasks, there was an average
relative WER improvement of 19% compared with GMM-
HMM. (Povey et al. 2018a) proposed two innovative im-
provements on the basis of TDNN[10], thereby further de-
veloped the context-sensitive DNN-HMM hybrid system. In
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(Povey et al. 2018a), A method of matrix called Singular
Value Decomposition (SVD) is used to compress the pa-
rameters of model, then the orthogonal matrix is general-
ized to the semi-orthogonal matrix for the non-square ma-
trix in order to maintain the modeling power. Meanwhile, a
great deal of research work have been invested in improving
the robustness of the system. The multistream CNN (Han
et al. 2020), inspired by the multistream self-attention ar-
chitecture (Han et al. 2019) but without the multi-headed
self-attention layers, processes the input speech frames in
multiple streams. Each stream stacks TDNN-F (Povey et al.
2018a) with specific dilation rate for diversity. It is reported
that a system which combined multistream CNN with self-
attentive SRU[7] has achived a SOTA Speech Recognition
on Librispeech. In addition, SpecAugment data augmenta-
tion method (Park et al. 2019), which gives masks on the
spectrogram of input utterances, are performed during train-
ing. We have thoroughly investigated the recent acoustic
models that work well and compared their performance on
Accented English ASR. We found that multistream CNN has
the best effect, but the improvement relative to the baseline
is still not very obvious. Therefore, we consider adding some
representative information to the input of the network.

In the field of speaker recognition, one popular approach
to address speaker variability is to augment the DNN’s in-
put features with auxiliary features which embed speaker
information. I-vector (Dehak et al. 2010) which captures
both speaker and environment specific information has been
shown to be effective for ASR task (Peddinti et al. 2015),
and DNN-based embeddings such as x-vector (Snyder et al.
2018) have replaced i-vector in many certain circumstances.
X-vector framework extracts fixed-dimension speaker em-
beddings from variable-length utterances, has achieved su-
perior performance especially when given sufficient train-
ing data compared with i-vector framework. For accented
speech, the information of tone and speaking habit is of
great importance. In addition, considering the scarcity of
both accent-related corpus and speaker-related corpus data,
we can treat an accent as a speaker. There has been some
literature on accent and dialect adaptive speech recognition.
In (DeMarco and Cox 2013), i-vector has been used to char-
acterize different native British accents. Accent-dependent
i-vector and x-vector are used in (Chen et al. 2015; Tu-
ran, Vincent, and Jouvet 2020) to improve the performance



of NN-based multi-accent speech recognition, respectively.
we extracted four types of representations (i.e., spk-ivector,
accent-ivector, spk-xvector, accent-xvector) and compared
their efficiency in accented ASR system. Spk-ivector is a
regular i-vector while accent-ivector use the same strategy
as spk-ivector, but classify the accents in the training set.
Similar to x-vector, accent-xvector system use TDNNs with
a pooling layer that collect statistics over time and the seg-
ment level representation is then used as the input of two
fully connected layers to predict the accent labels rather
speaker labels. After training, the accent embedding is ex-
tracted from the affine component of the first fully connected
layer. We found that both speaker and accent relevant em-
beddings can improve the effect of ASR. What’s more, x-
vector embedding performs better than i-vector embedding.

Finally, under the rescoring of language model, our best
system achieved a relative WER improvements of 40.6% on
development set and 35.6% on evaluation set compared with
the baseline.

The rest of this paper is structured as follows. In Section
2, we describe the details of our systems. In Section 3, we
provide the experimental setups and discuss the results from
various approaches. Finally, we conclude our work in Sec-
tion 4.

System Structure
Acoustic Modeling

We followed the conventional steps to train hybrid GMM-
HMM acoustic models referring to Kaldi (Povey et al. 2011)
recipe for CHIMEG6'. It has been shown that a sequence-
level training criteria like lattice-free maximum mutual in-
formation (LF-MMI) performs better than frame-level crite-
ria for ASR (Povey et al. 2016). Our systems are based on
the TDNN-F (Povey et al. 2018a) acoustic model using LF-
MMI training criterion. We experimented various network
structures. All of our experiments are based on Kaldi toolkit.

e TDNN-F: TDNN-F model is the first 11-layers of
TDNN-F in the recipe for CHIME6 of the Kaldi
(egs/chime6/s5_trackl/local/chain/
tuning/run_tdnn_1b. sh).

* CNN-TDNNF-Attention: The CNN-TDNNF-Attention
model consists of 1 CNN layer followed by 11 time-delay
layers and a time-restricted self-attention layer (Povey
et al. 2018b), and apply SpecAugment (Park et al. 2019)
layer on top of the architecture thus enable it more robust.
The CNN layer has a kernel size of 3x3 and a filter size of
64. The 11-layers TDNN-F share the same configuration
as the previous illustrated TDNN-F except substitutes the
first TDNN layer with a TDNN-F layer, which has 1536
nodes, 256 bottleneck nodes and no time stride. The at-
tention block has 8 heads, the value-dim and key-dim are
set to 128 and 64 respectively, the context-width is 10
with the same number of left and right inputs, and time
stride is 3.

* Multistream CNN: Position 5-layers CNN to better ac-
commodate the top SpecAugment layer, followed by 11-
layers multistream CNN (Han et al. 2020).

Multistream CNN Architecture

Multistream CNNs have shown its superiority in robust
speech recognition, for its diversity in temporal resolutions
across multiple parallel streams would achieve stronger ro-
bustness.
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Figure 1: Schematic diagram of the multistream CNN acous-
tic model architecture.

As shown in Figure 1, the input speech frames is first pro-
cessed by a few initial single stream CNN layers, which can
be TDNN-F or 2D-CNN, and then enters multiple specific
branches that stacked by TDNN-F layers. To achieve the di-
versity of temporal resolution, every branched stream has a
unique dilation rate which corresponds to the time stride in
the TDNNs. Each dilation rate is chosen from the default
subsampling rate (3 frames) in order to make TDNN-Fs bet-
ter streamlined with the training and decoding process when
given input speech frames are subsampled.

In our multistream CNN network, the log-mel spectro-
gram is first randomely masked in both frequency and time
by a SpecAugment layer, then 5 layers of 2D-CNN are posi-
tioned to better accommodate the features. We use 3x3 ker-
nels for the 2D-CNN layers, the filter size of the first two
layers is 64, the third and the fourth is 128, and the last is
256. Every other 2D-CNN layer we apply frequency band
subsampling with a rate of 2. In the multi-stream part, each
branch we stacked 11 layers TDNN-F with 512 nodes and
128 bottleneck nodes. We employ 3 streams with the 6-9-12
dilation rate configuration which means TDNN-Fs of each
streams have 6,9,12 time-stride respectively. The output em-
beddings of multiple streams are then concatenated, and fol-
lowed by ReLu, batch normalization and a dropout layer.

Accent/speaker Embeddings

I-vector is a popular technology in the field of speaker recog-
nition. It was motivated by the success of the Joint Factor
Analysis (JFA) (Kenny et al. 2007). JFA is used to construct
the subspace of speaker and channel separately, proposes
powerful tools to model the inter-speaker variability and to
compensate for channel/session variability in the context of
GMM. However, (Dehak 2009) proved that channel factors
estimated using JFA, which are supposed to model only
channel effects, also contain information about speakers.
Thus, i-vector methods construct a low-dimensional sub-

"https://github.com/kaldi-asr/kaldi/tree/master/egs/chime6/s5_track]  space, termed the total variability space. This space contains



factors of both speaker and channel variability. In this way,
i-vector models both speaker and channel information, and
characterizes most of the useful speaker-specific information
in a fixed and low dimensional feature.
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Figure 2: Embeddings extraction and integration with ASR
model.

Due to the powerful representation capabilities of DNNSs,
x-vector is now a powerful representation for speaker recog-
nition. On one hand, the TDNN-based architecture models
the short-term context; on the other hand, the statistics pool-
ing layers process the whole information across the time di-
mension so that subsequent layers operate on the entire seg-
ment. The DNN architecture used to extract x-vectors is out-
lined in Table 1. The splicing parameters for the five TDNN
layers are :{t-4,t-3,t- 2,t - L,t,t + L,t + 2,t + 3,t + 4}, {t -
2,6t + 2}, {t-3,t,t+ 3}, {t}, {t}. The statistics pooling layer
is used to calculate the mean and standard deviation on all
frames of the input segment, and followed by upper layers at
the segment level with a softmax output layer. Segment-level
embeddings are extracted from the 512-dimensional affine
component of the first fully connected layer. Speaker embed-
dings which capture both speaker and environment specific
information have been shown to be useful for ASR task. For
accented speech, the information of tone and speaking habit
of each accent is specially important. We have explored four
types of representations as auxiliary inputs in a neural net-
work to further improve the accuracy of accented ASR sys-
tem, the procedure is shown in Figure 2. In the procedure, we
first extract embeddings of each utterance, and then concate-
nate them to each frame of the utterance as a compensatory
input for neural network.

Neural-Network Alignment

The phonetic alignment generated by GMM could be inac-
curate, so we trained a DNN model using the frame-level cri-
teria to get a better alignment, which substitutes the GMM
alignment to train acoustic models with LF-MMI training
criterion.

Layer Layer Type Context Size

Framel TDNN {t-4:t+4} 512
Frame2 TDNN  {t-2.tt+2} 512
Frame3 TDNN {t-3,tt+3} 512
Frame4 TDNN {t} 512
Frame5 TDNN {t} 1500

Stat pool {0,T} 2 x 1500

Segment6 Affine {0} 512

Segment7 Affine {0} 512
Softmax {0} Num.accent/spk

Table 1: Accent/spk-xvector architecture.

System Features WERs (%) on eval
TDNN-F (baseline) MFCC 9.12 9.31
TDNN-F MFCC+Pitch 8.97 9.18
CNN-TDNNF-Attention MFCC+Pitch 8.92 9.12

Multistream CNN MFCC+Pitch 8.86 9.08

Table 2: Effect of different acoustic models.

Language Model Rescoring

During decoding, a 4-gram language model (LM) was used
to generate the lattice and score. This model has the problem
of data sparsity, because we only used the transcription of
the training data to train it. To get better results, we trained
a 4-layer TDNN-LSTM LM for lattice rescoring. It’s worth
mentioning that N was set to 20 for n-best rescoring. And
when training TDNN-LSTM LM we also use Librispeech
(Panayotov et al. 2015) text in addition to the transcription
of the training set.

Experimental Results
Data Sets and Augmentation

Our experiments were conducted on the accented English
data sets (16kHz) of eight countries provided by Datatang?,
including American (US), British (UK), Chinese (CHN),
Korean (KR), Japanese (JPN), Russian (RU), Portuguese
(PT) and Indian (IND). Each accented speech data is col-
lected from 40-110 speakers and recorded by Android de-
vices or iPhones in quiet house acoustic environment. The
speakers are gender balanced, age 20 to 60. Every accented
data has about 20 hours. The speech content consist of daily
communication and interaction with smart devices. Training
set, development set, and evaluation set are about 148 hours,
14 hours, and 21 hours respectively. In the evaluation set,
some accent data not included in the training set have also
been added, these data that have not seen will be used to test
the generalization of the system.

We have augmented the training data by changing the
speed of the audio signal, producing 3 versions of the orig-
inal signal with speed factors of 0.9,1.0 and 1.1 (Ko et al.
2017), and then apply volume perturbation. All the systems
share the same type of data augmentation techniques. In ad-
dition, SpecAugment which gives masks on the spectrogram
of input utterances, is performed during training.

*https://www.datatang.com



Embeddings Dev Eval
[M1] w/o embeddings 8.86 9.08
[M2] Spk-ivectors 7.18 8.01
[M3] Accent-ivectors ~ 7.17  7.95
[M4] Accer}t-lvectors 700 8.02

+ spk-ivectors
[MS] Spk-xvectors 7.04 7.76
[M6] Accent-xvectors 7.02  7.89
[M7] Accent-xvectors 6.95 7.74

+ spk-xvectors

Table 3: WERS (%) achieved by multistream CNN with var-
ious input embeddings.

Effect of Acoustic Model

Firstly, we choose the pure 11-layers TDNN-F to implement
a baseline system. The features are 40-dimensional high res-
olution MFCC computed with a 25ms window and shifted
every 10ms. Table 2 shows that Kaldi pitch features can
give improvements on tonal languages for ASR systems. So
we choose the 43-dimensional MFCC with pitch as acoustic
features for our systems.

Secondly, we replace the network with several models as
illustrated in Sec. 2.1. The results of different network archi-
tectures are shown in Table 2. Finally, the Multistream CNN
is trained and get the best performance. As a result, we yield
relative WER improvements of 2.8% and 2.4% on the de-
velopment set and evaluation set respectively compared with
the baseline system.

Effect of Accent/speaker Embeddings

To further improve performance of the ASR system, we have
explored various embeddings as auxiliary features while
share the same acoustic model and training strategy. The
WERSs achieved by the 7 systems are reported in Table 4.

Model M1 is a model trained without any auxiliary em-
beddings, and its WER is highest in Table 4, so we can con-
clude that using embeddings as complementary features can
significantly improve the performance of accented English
speech recognition system.

We observe that both spk-ivectors model (M2) and accent-
ivectors model (M3) can achieve the similar WER reduction,
and the spk-ivectors + accent-ivectors model (M4) can get a
further improvement on development set, which means that
both speaker-relevant information and accent-relevant infor-
mation are helpful for accent adaption in accented ASR.
This results can also be observed from M5 to M7, which
are the models applied the x-vector embeddings as auxiliary
features.

In Table 4, we observe that the x-vector embeddings(MS5,
M6, and M7) outperform i-vector embeddings(M2, M3,
M4). Compared with Model M4, which utilize the combi-
nation of spk-ivectors and accent-ivectors, Model M6 which
just augment input with accent-xvectors get the same 7.02%
WER on development set. This is because the x-vector has
a more powerful capability to characterize accent-relevant
information. When combining the accent-xvectors and spk-
xvectors in Model M7, we achieve a relative WER reduction

Embeddings Dev Eval
w/o embeddings 8.86  9.08
Spk-ivectors 7.18 8.01

Accent-ivectors 7.17 7.95
+ spk-ivectors 7.02 8.02
Spk-xvectors 7.04 7.76
Accent-xvectors 7.02 7.89
+ spk-xvectors  6.95 7.74
+ LM rescoring 5.41 5.99

Table 4: WERS (%) achieved by multistream CNN with var-
ious input embeddings.

WER (%) WER (%)

System Features Embeddings
on dev on eval
Baseline (TDNN-F) MFCC - 9.12 9.31
Multistream CNN MECCa4Pitch  2CCCnIXVECtors ¢ g5 7.74
+spk-xvectors
Multistream CNN MECCPitch accent-xvectors 5.41 5.99

+LM rescoring +spk-xvectors

Table 5: Effect of language model rescoring.

of 21.5% on development set, and 14.7% on evaluation set,
compared with baseline model M1.

Effect of Language Model Rescoring

We selected the best model M7 from Table 4, and applied
N-best rescoring using the TDNN-LSTM LM. As shown
in Table 5, the best system is taken to be the one that per-
forms best on the development set. The input feature is 43-
dimensional Kaldi MFCC with Pitch appended with spk-
xvectors and accent-xvectors, acoustic model is Multistream
CNN, and with LM rescoring we got 5.41% WER on de-
velopment set and 5.99% on evaluation set. Compared with
baseline system, we achieve relative WER improvements of
40.6% and 35.6% on the development set and evaluation set
respectively.

Conclusions

This paper presents the systems for the Accented English
ASR. We explored various approaches to improve the ac-
curacy of accented ASR system as following aspects. The
multistream CNN which parallel process input with differ-
ent time strides gives the acoustic model stronger robust-
ness. In addition, accent/speaker embeddings can charac-
terize inner accent-relevant information, and further bring
improvement in accented ASR. Moreover, results show that
x-vector embeddings outperform i-vector embeddings. Fi-
nally, a language model (LM) was trained for lattice rescor-
ing. We chose the best model from previous attempts to do
LM rescoring and achieved a great improvement in compar-
ison with our baseline.
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