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Abstract

Optical Music Recognition is a field of research that investi-
gates how to computationally decode music notation from im-
ages. A solution to this problem was published back in 2018.
Our work is more or less a repetition of that. In this work, we
are going to study the use of neural networks that work in an
end-to-end manner. It is achieved by using a neural network
model that combines the capabilities of convolutional neu-
ral networks, which work on the input image, and recurrent
neural networks, which deal with the sequential nature of the
problem. Thanks to the use of Connectionist Temporal Clas-
sification loss function, models can be directly trained with
input images accompanied by their corresponding transcripts
to music symbol sequences. We use the Printed Images of
Music Staves (PrIMuS) dataset, presented by the same au-
thors of that 2018 paper, to train and evaluate this neural net-
work approach. We will be testing the capability of this neural
network in our experiments.

Introduction

The availability of huge collections of digital scores has fa-
cilitated both the music professional practice and the ama-
teur access to printed sources that were difficult to obtain in
the past. In addition to instant availability, the advantages of
having the digitized image of a work over its printed material
are restricted to the ease to copy and distribute, and the lack
of wear that digital media intrinsically offers over any physi-
cal resource. The great possibilities that current music-based
applications can offer are restricted to scores symbolically
encoded. Notation software such as Finale, Sibelius, Mus-
eScore, or Dorico, computer-assisted composition applica-
tions such as OpenMusic, digital musicology systems such
as Music21, or Humdrum, or content-based search tools
(Casey et al. 2008), cannot deal with pixels contained in
digitized images but with computationally-encoded symbols
such as notes, bar-lines or key signatures.

Different initiatives have been proposed to manually fill
this gap between digitized music images and digitally en-
coded music content. However, the manual transcription of
music scores does not represent a scalable process, given
that its cost is prohibitive both in time and resources. There-
fore, it is necessary to resort to assisted or automatic tran-
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scription systems. The Optical Music Recognition (OMR)
is defined as the research about teaching computers how to
read musical notation , with the ultimate goal of exporting
their content to a desired format.

Despite the great advantages of its development, OMR
is far from being reliable as a black box, as current optical
character recognition (Liwicki et al. 2007) (Calvo-Zaragoza
et al. 2018) or speech recognition technologies (Graves, Mo-
hamed, and Hinton 2013) do. In the scientific community,
there are hardly any complete approach for its solution. Tra-
ditionally, this has been motivated because of the small sub-
tasks in which the workflow can be divided. Simpler tasks
such as staff-line removal, symbol localization and classifi-
cation, or music notation assembly, have so far represented
major obstacles. Nonetheless, recent advances in machine
learning, and specifically in Deep Learning (DL) (Graves,
Mohamed, and Hinton 2013), not only allow solving these
tasks with some ease, but also to propose new schemes with
which to face the whole process in a more elegant and com-
pact way, avoiding heuristics that make systems limited to
the kind of input they are designed for. In fact, this new sort
of approaches has broken most of the glass-ceiling problems
in text and speech recognition systems.

Considering this as a starting point, this work was re-
stricted to the consideration of monodic short scores taken
from real music works in Common Western Modern No-
tation (CWMN). Then, one can use the Connectionist
Temporal Classification (CTC) loss function (Voigtlaender,
Doetsch, and Ney 2016),which means that it is not neces-
sary to provide information about the composition or loca-
tion of the symbols in the image, but only pairs of input
scores and their corresponding transcripts into music symbol
sequences. According to previous experimental results, this
approach proves to successfully solve the end-to-end task.

Related Work

Music score is the main form of non-voice communication
of music. With the development of technology, the way to
preserve and disseminate music scores is changing. Com-
puter music scoring software in the 1970s and 1980s, al-
though can enter music score, but difficult to use. The sub-
sequent addition of keyboard and mouse typing, input ef-
ficiency remains low. Therefore, a large number of music
works ( such as films, dramas, concerts, etc. ) exist in paper



form. In order to realize the automatic conversion from pa-
per music to symbolic music, Optical Music Recognition (
OMR ) technology came into being (Ng, McLean, and Mars-
den 2014). OMR is a technique that converts paper music
images into symbolic forms ( MIDI or XML ) that can be di-
rectly recognized and used by computers. However, it is very
time-consuming to convert paper music score into computer-
readable semantic symbol form, and retrieve, analyze and
other operations. The development of target detection and
recognition algorithms (Calvo-Zaragoza, Gallego, and Per-
tusa 2017) in image processing promotes the development
of OMR system and related algorithms.

Music image preprocessing.

Image preprocessing is a basic step in many computer vi-
sion tasks. The main purpose of this stage is to make the
adjusted image easier to operate. The most common im-
age processing includes enhancement, de-tilt, blur, denois-
ing and binarization. To tilt is to adjust the image tilt to get a
better perspective. Most digital images are affected by noise
in the process of acquisition (Keil and Ward 2019), trans-
mission or processing, and their color and brightness have
random noise signals. Generally, the global threshold is de-
termined by the whole image, and for the adaptive thresh-
old, the local information in the image should be consid-
ered (Glorot, Bordes, and Bengio 2011). Ng et al modified
the global threshold proposed by Ridler and Calvard. Some
recent OMR studies also used adaptive thresholds.n the pro-
cess of binarization, the image is analyzed to determine what
is noise and what is useful for the task. The technologies for
selecting binary threshold include global method and adap-
tive method.

Music symbol recognition

After basic preprocessing, music image enters the process
of music symbol recognition. This process mainly includes
spectral line processing and music symbol processing.

Music symbol recognition includes three main steps :
spectral line processing, music symbol separation and clas-
sification. Usually, the spectral line is first detected and re-
moved from the image (Byrd and Simonsen 2015). Then, the
symbols of the model are separated into basic elements, and
these basic elements are then used to extract features, and
these features are fed back to the classifier.

Construction of Music Model

The construction of music score model is to embed all the re-
trieved information into the appropriate output file, and con-
struct the semantic model or data model by processing the
output of the previous steps. This model should represent the
recoding of the scores in the input. The output model should
be expressed in machine-readable format. The usual OMR
output formats include MIDI, MusicXML, MEI, NIFF, Fi-
nale, WAVE (Rebelo et al. 2012), etc. To decide which code
to use, we must consider what the application might need.
Using the knowledge obtained in the previous steps and dif-
ferent studies will help to standardize this stage. At present,
there are few studies on OMR processing coding, but many

works in other fields focus on the coding format that better
represents music and its structure.

Proposed Solution

We describe in this section the neural models for the OMR
task in an end-to-end manner. In this case, a monodic staff
section will be processed at each moment.

Let X = {(1, y1), (x2, Y2), ...} be our end-to-end applica-
tion domain, where x; represents a single staff image and y;
is its corresponding sequence of music symbols. An image
X is considered to be a sequence of variable length, given by
the number of columns. Given an input image X, the prob-
lem can be solved by retrieving its most likely sequence of
music symbols ¢:

9 = argmax P(y|z) (1)
ge3’"

In this work, the Recurrent Neural Network will be pro-
ducing the sequence of musical symbols that fulfills Equa-
tion (1). However, we first add a Convolutional Neural Net-
work for learning how to process the input image . This is
implemented by concatenating all output channels into an
image. Then, columns of resulting images are treated as in-
dividual frames for the recurrent block. The restriction above
is that, for each staff, the training set only provides its cor-
responding sequence of symbols, without any explicit infor-
mation about the location of the semantic or agnostic sym-
bols. This scenario can be solved by the CTC loss function .
A graphical scheme of the framework is given in Figure 1.
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Figure 1: Graphical scheme of the end-to-end neural ap-
proach considered.

Implementation Details

The details of the neural model are given in Table 3. Input
variable-width grayscale images are rescaled at the height
of 128 pixels, without modifying aspect ratio. Two recur-
rent layers try to convert the filtered image into a discrete
sequence of musical symbols. Each frame performs a clas-
sification, with a fully-connected layer of alphabet plus one
(the blank symbol) numbers of neurons.

A mini-batch has 16 samples. Adadelta algorithm for
adaptively updating the learning rate. Predictions must be
post-processed to emit the actual sequence. Thanks to the



Table 1: Notation: Input(h x w x ¢) is an image of size h x w
and c channels; Conv(n, h x w) denotes a convolution oper-
ator of n filters and kernel size of h x w; MaxPooling(h x w)
is a down-sampling operation of size h x w; BLSTM(n) is a
bi-directional Long Short Term Memory unit of n neurons;
Dense(n) denotes a dense layer of n neurons; and Softmax()
is the softmax activation function. 3 denotes the alphabet of
musical symbols.

Input (128 x W x 1)
Convolutional Block
Conv(32, 3 x 3), MaxPooling(2 x 2)
Conv(64, 3 x 3), MaxPooling(2 x 2)
Conv(128, 3 x 3), MaxPooling(2 x 2)
Conv(256, 3 x 3), MaxPooling(2 x 2)
Recurrent block
BLSTM(256)
BLSTM(256)

Dense(|X| + 1)

Softmax()

CTC loss function, the decoding can be performed greed-
ily: when the symbol predicted by the network in a frame is
the same as the previous one, it is assumed that they are the
same frame and only one symbol is concatenated to the se-
quence. There are two indications for a new symbol: either
the predicted symbol is different from the previous one or
the predicted symbol is the blank symbol.

Note that the limitation is that the output cannot contain
more musical symbols than the number of frames of the in-
put image, which is unlikely to happen.

Experimental Overview And Results
Experimental Setup

Concerning evaluation metrics, there is an open debate on
which metrics should be used in OMR . This is especially
arguable because of the different points of view that the use
of its output has: it is not the same if the intention of the
OMR is to reproduce the content or to archive it in order
to build a digital library. Here we are only interested in the
computational aspect itself, in which OMR is understood as
a pattern recognition task. So, we shall consider metrics that,
even assuming that they might not be optimal for the purpose
of OMR, allow us to draw reasonable conclusions from the
experimental results. Therefore, let us consider the follow-
ing evaluation metrics:

* Sequence Error Rate (%): ratio of incorrectly predicted
sequences (at least one error).

* Symbol Error Rate (%): computed as the average num-
ber of elementary editing operations (insertions, modi-
fications, or deletions) needed to produce the reference
sequence from the sequence predicted by the model.

Note that the length of the agnostic and semantic se-
quences are usually different because they are encoding dif-
ferent aspects of the same source. Therefore, the compari-
son in terms of Symbol Error Rate, in spite of being nor-

malized (%), may not be totally fair. Furthermore, the Se-
quence Error Rate allows a more reliable comparison be-
cause it only takes into account the perfectly predicted se-
quences (in which case, the outputs in different representa-
tions are equivalent).

Below we present the results achieved with respect to
these metrics. In the first series of experiments we measure
the performance that neural models can achieve as regards
the representation used. First, they will be evaluated in an
ideal scenario, in which a huge amount of data is available.
Therefore, the idea is to measure the glass ceiling that each
representation may reach. Next, the other issue to be ana-
lyzed is the complexity of the learning process as regards
the convergence of the training process and the amount of
data that is necessary to learn the task. Finally, we analyze
the ability of the neural models to locate the musical sym-
bols within the input staff, task for which it is not initially
designed. For the sake of reproducible research, source code
and trained models are freely available.

Performance

We show in this section the results obtained when the net-
works are trained with all available data. This means that
about 80,000 training samples are available, 10% of which
are used for deciding when to stop training and prevent
overfitting. The evaluation after a 10-fold cross validation
scheme is reported in Figure 2.

Representation

Agnostic Semantic
Sequence Error Rate () 17.9 125
Symbol Error Rate (%) 1.0 0.8

Figure 2: Evaluation metrics with respect to the representa-
tion considered. Results reported represent averages from a
10-cross validation methodology.

Interestingly, the semantic representation leads to a higher
performance than the agnostic representation. This is clearly
observed in the sequence-level error (12.5% versus 17.9%),
and somewhat to a lesser extent in the symbol-level error
(0.8% versus 1.0%). It is difficult to demonstrate why this
might happen because of the way these neural models oper-
ate. However, it is intuitive to think that the difference lies
in the ability to model the underlying musical language. At
the image level, both representations are equivalent (and, in
principle,

the agnostic representation should have some advantage).
On the contrary, the recurrent neural networks may find it
easier to model the linguistic information of the musical no-
tation from its semantic representation, which leads—when
there is enough data, as in this experiment—to produce se-
quences that better fit the underlying language model.

In any case, regardless of the selected representation it is
observed that the differences between the actual sequences



and those predicted by the networks are minimal. While
it cannot be guaranteed that the sequences are recognized
with no error (only 12.5% at best), the results can be in-
terpreted as that only around 1% of the symbols predicted
need correction to get the correct transcriptions of the im-
ages. Therefore, the goodness of this complete approach is
demonstrated, in which the task is formulated in an elegant
way in terms of input and desired output.

Concerning computational cost we would like to empha-
size that although the training of these models is expen-
sive—in the order of several hours over high-performance
Graphical Processing Units (GPUs)— the prediction stage
allows fast processing. It takes around 1 second per score in
a general-purpose computer like an Intel Core 15-2400 CPU
at 3.10 GHz with 4 GB of RAM, and without speeding-up
the computation with GPUs. We believe that this time is ap-
propriate for allowing a friendly usability in an interactive
application.

Error Analysis

In order to dig deeper into the previously presented results,
we conducted an analysis of the typology of the errors pro-
duced. The most repeated errors for each representation are
reported in Figure 3.

Representation

Rank Agnostic Semantic

Symbol Percentage Symbol Percentage
#1 barline-L1 45.5% barline 38.6%
#2 gracenote.sixteenth-L4 1.8% tie 9.4%
#3 accidental natural-53 1.4% gracenote C5-sixteenth 1.5%

Figure 3: List of the 3 most common errors with respect to
the representation considered. Percentages are relative to the
total error rates from Figure 2.

In both cases, the most common error is the barline, with
a notable difference with respect to the others. Although this
may seem surprising at first, it has a simple explanation: the
incipits often end without completing the bar. This, at the
graphic level, hardly has visible consequences because the
renderer almost always places the last barline at the end of
the staff (most of the incipits contain complete measures).
Thus, the responsibility of discerning whether there should
be a barline or not lies almost exclusively in the capacity
of the network to take into account “linguistic” information.
The musical notation is a language that, in spite of being
highly complex to model in its entirety, has certain regulari-
ties with which to exploit the performance of the system, as
for instance the elements that lead to a complete measure.
According to the results presented in the previous section,
we can conclude that a semantic representation, in compar-
ison with the agnostic one, makes it easier for the network
to estimate such regularities. This phenomenon is quite intu-
itive, and may be the main cause of the differences between
the representations’ performance.

As an additional remark, note that both representations
miss on grace notes, which clearly represent a greater com-
plexity in the graphic aspect, and are worse estimated by the

language model because of being less regular than conven-
tional notes.

In the case of the semantic representation, another com-
mon mistake is the tie. Although we cannot demonstrate the
reason behind these errors, it is interesting to note that the
musical content generated without that symbol is still musi-
cally correct. Therefore, given the low number of tie sym-
bols in the training set (less than 1%), the model may tend
to push the recognition towards the most likely situation, in
which the tie does not appear.

Learning Complexity

The vast amount of available data in the previous experiment
prevents a more in-depth comparison of the representations
considered. In most real cases, the amount of available data
(or the complexity of it) is not so ideal. That is why in this
section we want to analyze more thoroughly both represen-
tations in terms of the learning process of the neural model.

First, we want to see the convergence of the models
learned in the previous section. That is, how many train-
ing epochs the models need for tuning their parameters ap-
propriately. The curves obtained by each type of model are
shown in Figure 4.

From these curves we can observe two interesting phe-
nomena. On the one hand, both models converge relatively
quick, as after 20 epochs the elbow point has already been
produced. In fact, the convergence is so fast that the agnostic
representation begins to overfit around the 40th epoch. On
the other hand, analyzing the values in further detail, it can
be seen that the convergence of the model that trains with
the agnostic representation is more pronounced. This could
indicate a greater facility to learn the task.

To confirm this phenomenon, the results obtained in an
experiment in which the training set is incrementally in-
creased are shown below. In particular, the performance of
the models will be evaluated according to the size of training
set sizes of 100, 1000, 10,000, and 20,000 samples. In addi-
tion,in order to favor the comparison, the results obtained in
Section 5.2 will be drawn in the plots (around 80,000 train-
ing samples).

Agnostic —e—
Semantic e

Symbol Error Rate
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Training iteration

Figure 4: Symbol Error Rate over validation partition with
respect to the training epoch.

The evolution of both Sequence and Symbol Error Rate



are given in Figure 6a,b, respectively, for the agnostic and
semantic representations.

These curves certify that learning with the agnostic model
is simpler, because when the number of training samples is
small, this representation achieves better results.

We have already shown that, in the long run, the semantic
representation slightly outperforms its performance. How-
ever, these results may give a clue as to which representation
to use when the scenario is not so ideal like the one presented
here. For example, when either there is not so much training
data available or the input documents depict a greater diffi-
culty (document degradation, handwritten notation, etc.).
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Figure 5: Comparison between agnostic and semantic rep-
resentations in the evolution of the evaluation metrics with
respect to the size of the training set. Note that the x-axis
does not present a linear scale.(a)Sequence Error Rate; (b)
Symbol Error Rate.

The examples given above show some of the most repre-
sentative errors found. During the search of these examples,
however, it was difficult to find samples where both system
failed. In turn, it was easy to find examples where Photo-
score failed and our system did not. Obviously, we do not
mean that our system behaves better than Photoscore, but
rather that our approach is competitive with respect to it.

Conclusion

In this work, we have studied the suitability of the use of
the neural network approach to solve the OMR task in an

end-to-end fashion through a controlled scenario of printed
single-staff monodic scores from a real world dataset.

The main contribution of the present work consisted of
analyzing the possible codifications that can be considered
for representing the expected output. In this paper we have
proposed and studied two options: an agnostic representa-
tion, in which only the graphical point of view is taken into
account, and a semantic representation, which codifies the
symbols according to their musical meaning.

Our experiments have reported several interesting conclu-
sions:

* The task can be successfully solved using the considered
neural end-to-end approach.

* The semantic representation that includes musical mean-
ing symbols has a superior glass ceiling of performance,
visibly improving the results obtained using the agnostic
representation.

* The learning process with the agnostic representation
made up of just graphic symbols is simpler, since the neu-
ral model converges faster and the learning curve is more
pronounced than those with the semantic representation.

* Regardless of the representation, the neural model is not
able to locate the symbols in the image—which could
be expected because of the way the CTC loss function
operates.

As future work, this work opens many possibilities for
further research. it is undoubted that the most promising av-
enue is to extend the neural approach so that it is capable
of dealing with a comprehensive set of notation symbols,
including articulation and dynamic marks, as well as with
multiple-voice polyphonic staves.
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