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Abstract

Low-shot machine learning is inspired by the observation
that humans, based on prior experience, can learn new con-
cepts given only a few examples. One way to acquire this
prior knowledge is by meta-learning on tasks analogous to
the low-shot learning task. Especially, unsupervised meta-
learning waives the demanding requirement that the auxiliary
dataset for task construction must be labeled. However, most
existing approaches focus on pretraining a classifier for di-
verse tasks, but omit the practically relevant situation where
the target task is relatively fixed and the goal is optimal per-
formance on this specific task, e.g., recognition of few known
rare diseases. In this work, we propose Unsupervised Meta-
learning with tasks constructed with Pseudo Labels and Aug-
mentation (UMPLA), for improving performance on a spe-
cific target task. UMPLA innovatively connects the model-
agnostic meta-learning (MAML) process with the target task,
by generating pseudo labels for the unlabeled data using a
sentinel model fit to the target task. These pseudo labels are
then used during MAML to steer the model towards learning
the classes in the target task by exploiting interclass visual
correlations.

1 Introduction

Deep convolutional neural networks (DCNNs) have sur-
passed human on various large-scale recognition tasks,
e.g., the ILSVRC-12 image classification challenge (Rus-
sakovsky et al. 2015). The superb performance, however,
is fundamentally driven by the emergence of various large-
scale labeled datasets. The demanding requirement for mas-
sive labeled training data could impede the development of
DCNN-based solutions to a new problem. Humans, in con-
trast, can learn new concepts quickly given only a few ex-
amples. This intriguing characteristic of biological learning
has inspired the rise of low-shot machine learning (Fei-Fei,
Fergus, and Perona 2006).

It is widely accepted that such learning capability of
humans is granted by prior knowledge accumulated from
life experience (Lake et al. 2011). Similarly, low-shot ma-
chine learning assumes the access to a large pool of auxil-
iary dataset, which is drawn from the same distribution but
different classes from the target task. Then, prior knowl-
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edge can be acquired from this auxiliary set, and general-
ized for the low-shot learning task (Lake et al. 2011). A
particular group of methods that has been proven effective
in acquiring this prior knowledge is by meta-learning on
tasks constructed from the auxiliary set, similarly to the tar-
get task (Finn, Abbeel, and Levine 2017; Snell, Swersky,
and Zemel 2017). Taking a step further, unsupervised meta-
learning (Hsu, Levine, and Finn 2018; Khodadadeh, Boloni,
and Shah 2019) eliminates the requirement of labeling the
auxiliary set entirely.

While promising, most existing meta-learning approaches
to low-shot learning focus on pretraining a classifier that can
be quickly adapted for diverse tasks. As a result, the meta-
learning process and the target task are often isolated (Finn,
Abbeel, and Levine 2017; Hsu, Levine, and Finn 2018), and
the meta-learner has little knowledge about its end task. We
hypothesize that, by connecting the meta-learning process
with the target task, the performance can be boosted on the
specific task. Our hypothesis is based on the observation
that, even if the unlabeled set and the target task consist of
disjoint classes, the data in the unlabeled set can still help in
learning task-specific category semantics by exploiting in-
terclass correlations.

In addition, we notice that UMTRA (Khodadadeh,
Boloni, and Shah 2019)—a state-of-the-art (SOTA) un-
supervised meta-learning algorithm for low-shot image
recognition—assumed the number of classes in the auxil-
iary dataset to be large. This assumption, however, may be
difficult to satisfy in practice at times. Again taking rare dis-
ease recognition for example, the number of common dis-
ease types (to comprise the auxiliary dataset) for a certain
organ is limited. In this work, we loose this constraint and
only require the auxiliary dataset to be large in amount of
raw data, which is easier to satisfy.

Motivated by the analysis above, we propose an algorithm
coined Unsupervised Meta-learning with tasks constructed
with Pseudo Labels and Augmentation (UMPLA). Most no-
tably, UMPLA bridges the unsupervised meta-learning pro-
cess and the target task with a sentinel model.

2 Related work

Transfer learning has been proven an effective strategy when
the data is insufficient for training DCNNs from scratch
(Tan et al. 2018). When applied to low-shot learning, how-



ever, finetuning on the target task with a few samples would
severely overfit (Snell, Swersky, and Zemel 2017). To cope
with the challenge, low-shot learning has developed into a
dedicated subfield in machine learning (Fei-Fei, Fergus, and
Perona 2006). In recent years, encouraging results have been
achieved in DCNN-based low-shot classification (Gidaris
and Komodakis 2018; Hariharan and Girshick 2017), detec-
tion (Hu et al. 2019; Kang et al. 2019; Karlinsky et al. 2019),
and segmentation tasks (Fan et al. 2020; Shaban et al. 2017;
Wang et al. 2019; Zhang et al. 2019). Although the tasks and
methods are versatile, a common key component across the
above-enumerated works is the access to a relatively large
auxiliary dataset, which is assumed to be drawn from the
same distribution as the target low-shot learning task. It is
on this dataset that the prior knowledge about the target task
is built, analogous to the life experience of human when fac-
ing a new learning task. In this work we focus on low-shot
image classification, a major task in computer vision.

One way of effective knowledge building from the large
auxiliary dataset is by training the network with a large
quantity of tasks constructed in a way similar to the tar-
get low-shot learning task. Notably, Vinyals (Vinyals et al.
2016) proposed to sample mini-batches called episodes dur-
ing training, where each episode was designed to mimic the
target task by subsampling classes as well as data points.
The use of episodes makes the training process more faith-
ful to the test environment and thereby improves general-
ization (Ravi and Larochelle 2017). A big group of works
belong to the genre of metric learning (Kulis 2012; Koch,
Zemel, and Salakhutdinov 2015; Li et al. 2019). These meth-
ods aim to learn a (set of) projection function(s) such that
when projected in the embedding space, images can be eas-
ily classified using simple nearest neighbour or linear classi-
fiers. In this case the learned transferrable prior knowledge
is the projection functions. Another group of works are the
model-agnostic meta-learning (MAML) (Finn, Abbeel, and
Levine 2017; Nichol, Achiam, and Schulman 2018; Nichol
and Schulman 2018). MAML aims at learning the initial pa-
rameters of a deep network from a variety of different tasks,
such that one or a few gradient descending steps lead to ef-
fective generalization on a new low-shot learning task (easy
to finetune in effect). Being model-agnostic, these methods
are compatible with any differentiable network architecture,
as opposed to a third group of works which use a custom net-
work architecture for encoding the knowledge acquired dur-
ing the meta-learning phase, e.g., in fast weights (Ba et al.
2016), neural plasticity values (Miconi, Clune, and Stan-
ley 2018), the state of temporal convolutions (Mishra et al.
2017) or in the long short-term memory (LSTM) (Hochreiter
and Schmidhuber 1997; Munkhdalai and Yu 2017; Ravi and
Larochelle 2017; Santoro et al. 2016). Although promising,
the methods described above all relied on extensive labeling
of the large auxiliary dataset. This demanding requirement
may hinder their practical applications to low-show learning
problems in real world.

Unsupervised meta-learning takes a step further by waiv-
ing this demanding requirement and building up prior
knowledge on a large but unlabeled dataset (Hsu, Levine,
and Finn 2018; Khodadadeh, Boloni, and Shah 2019), where

a key issue is to determine labels for the unlabeled sam-
ples. Assuming knowledge of an upper bound on the number
of classes present in potential target tasks, CACTUs (Hsu,
Levine, and Finn 2018) leveraged unsupervised embeddings
(Berthelot et al. 2018; Caron et al. 2018) to partition all the
unlabeled images into many clusters and assigned pseudo
labels accordingly. These pseudo labels were subsequently
used for low-shot learning with established frameworks in-
cluding ProtoNet (Snell, Swersky, and Zemel 2017) and
MAML (Finn, Abbeel, and Levine 2017). Different from
CACTUs, UMTRA (Khodadadeh, Boloni, and Shah 2019)
assumed that the number of classes in the unlabeled dataset
was large. Based on this assumption, a distinct numerical
class label was randomly assigned to each sample consec-
utively. Both CACTUs and UMTRA achieved competitive
performance on the Omniglot (Lake et al. 2011) and mini-
ImageNet (Vinyals et al. 2016) benchmarks. However, CAC-
TUs relied on repeated clustering of all the unlabeled images
which can be computationally costly, while UMTRA’s as-
sumption about the number of classes sometimes cannot be
satisfied in practice. In contrast, our method requires no clus-
tering just like UMTRA, while only assuming the unlabeled
dataset is large in quantity, which is much easier to satisfy.
Hence, this work further broadens practical applications of
low-shot machine learning.

Last but not least, the meta-learning process and end task
were isolated in most existing meta-learning approaches to
low-shot learning ((Finn, Abbeel, and Levine 2017; Hsu,
Levine, and Finn 2018; Khodadadeh, Boloni, and Shah
2019; Snell, Swersky, and Zemel 2017), to name a few). As
introduced earlier, such isolation may be suboptimal for per-
formance on a specific target task. In this work, we propose
to bridge the meta-learning process and the target task with
a “sentinel” model for performance improvement.

3 Methods
3.1 Problem statement

In a formal definition of low-shot image classification, a
learning task 7 comprises a labeled support set S =
{(z,y)}, where x is an image and y is its label; and similarly
a query set Q@ = {(x,y)}. Hence, T = (S,Q). An N-way
K -shot task includes N classes for recognition, each with
K instances in S, where K is small. Thus y € [1,..., N]
and |S| = N x K. The goal is to learn a classifier fp on S
that can differentiate the IV classes by outputting desirable
probability distributions over the classes. Here, f is param-
eterized by 6. Eventually the learned classifier is evaluated
on (). Note that the number of instances per class in () does
not have to be K. Meanwhile, we assume the access to an
unlabeled dataset: U = {x}, where |U| = M, drawn from
the same distribution as the target task. Further, we assume
much more images in U than in S, ie., M > N x K.
Lastly, following the convention in literature (e.g., (Finn,
Abbeel, and Levine 2017; Khodadadeh, Boloni, and Shah
2019; Snell, Swersky, and Zemel 2017)), we require that U
and 7 comprise disjoint classes from each other. We aim to
optimize fy’s performance on 7 by effectively utilizing U.
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Figure 1: Pipeline of the proposed UMPLA. Note the labeled support set in (a) and (d) is the same set from the target task.

3.2 Model

The pipeline of our UMPLA is illustrated in Fig. 1. Given a
target task 7 = (.9, @), it starts by fitting a “sentinel” model
to the limited data in the support set S. Next, this sentinel
model is utilized to generate pseudo labels for data points in
the unlabeled dataset U. Then, the pseudo labeled data are
used in a MAML-style learning process to meta-train the
classifier fy. Lastly, fy is finetuned on .S, and evaluated on
the query set (. In the following, we describe the steps in
detail.

Fitting the sentinel model. In UMPLA, the sentinel model
is the bridge across the MAML process and the target task
T. It fits the model parameters 6 for recognition of the
classes in 7, and then is utilized to generate pseudo labels
for images in the unlabeled set U. These pseudo labels will
be used in the MAML process, injecting domain knowledge
of the specific task. Concretely, we train fy on the support
set S of 7 until convergence (judged by the loss on 5), using
the cross-entropy loss:

= Lce(y,p) = —Z:]:

where p = fo(x) = [p1, ..., pn] is the predicted probability
distribution over the N classes, y = [y1, ..., yn] is the prob-
ability distribution of the label y,and Yy, = > pn =1
For a hard label, y is a one-hot vector, i.e., y, = 1ifn =1y,
otherwise y,, = 0.

Pseudo label generation. Given the fitted sentinel model,
we consider a straightforward pseudo label generating
scheme by directly utilizing the output of fy. Concretely,
for a data point x in the unlabeled set U, we first feed
it through fy to obtain its probability distribution over the
classes in the target task 7: p = fy(z). Then, we con-
sider two alternatives for the pseudo label generating func-
tion § = G(p): hard and soft labeling. In effect, hard la-
beling is the same as classifying x to one of the N classes:
Uha = Gna(p) = argmax,, p,,. In this case, §nq indicates
the class that x resembles most (recall that U and S do not
share any common class). For soft labeling, we use an iden-
tity function: §sr = Gs¢(p) = p. The motivation is that p ac-
tually reflects the extents of resemblance between x and all
the classes in 7. By exploiting interclass correlations (Lake
et al. 2011; Wei et al. 2020), g5 may help in learning the
semantics of multiple classes simultaneously.

[fCE(yva(x)) 1yn10gpna (1)

Pseudo label guided model-agnostic meta-learning. In
MAML (Finn, Abbeel, and Levine 2017), a meta-batch
(Nmeta) of tasks analogous to the target task are firstly con-
structed from the auxiliary dataset. Then, the network pa-
rameters 6 are adapted multiple times (/N,qpt) using each
constructed task alone, yielding ¢’ (the adaptation;). Iter-
ating through all the constructed tasks for adaptation com-
prises the inner loop of the meta-learning. Next, the net-
work parameters are meta-updated by collectively consid-
ering all the constructed tasks and their individually adapted
0"’s. This entire process described above comprises the outer
loop of the meta-learning. The loss function in the adapta-
tion and meta-update steps can be summarised in the form

below:
L7, (fo) = Z(x,y)ﬁ(%fe(fﬂ))v 2

where the data points belong to the support set for the adap-
tations: (z,y) € S;, or to the query set for the meta-update:
(z,y) € Q;. Note that in Equation (2) the label can either
be a hard one (a scalar) or a soft one (a vector), although we
use a scalar symbol here without losing generality.

By employing the pseudo labels, we inject task-specific
domain knowledge into the MAML process, and better pre-
pare the model for the target task. Specifically, for the hard
labeling scheme we employ the cross-entropy loss in Equa-
tion (1), whereas for the soft labeling scheme we employ the
Kullback-Leibler divergence loss:

EKL(yafH(x)) Z yn IOg yn/pn)

After the pseudo label guided MAML, fy is finetuned on
the support set of the target learning task, and finally evalu-
ated on its query set.

Lxi(yllp) =

4 Experiments

Experimental protocol. The Omniglot (Lake et al. 2011)
and minilmageNet (Vinyals et al. 2016) image recognition
tasks are the most commonly used low-shot learning bench-
marks recently. We adopt the train/validation/test splits and
N-way K-shot settings used in (Khodadadeh, Boloni, and
Shah 2019) for a direct comparison with existing unsuper-
vised meta-learning approaches. We follow the convention
to train on the training set, and use the validation set only
for performance generalization. No network engineering is
involved, as our focus is to validate the effect of bridging



Table 1: The effects of the hyperparameters meta-batch size
(NVmeta) and number of adaptations (Naqpt) on Omniglot
(left) and minilmageNet (right) validation accuracies (in %;
5-way 1-shot with soft pseudo labels).

Npeta: Omniglot Npeta: minilmageNet
Nadpt 16 | 32 [ & 16 | 24 [ 32
1 79.71 | 82.07 | 81.06 || 33.32 | 33.04 | 34.68
5 7823 | 76.48 | 77.74 || 33.96 | 34.72 | 34.64
10 74.18 | 74.27 | 72.77 || 32.88 | 34.56 | 33.92

the unsupervised meta-learning and the target task. Thus,
we employ the same architecture as broadly used in the
low-shot learning literature (Khodadadeh, Boloni, and Shah
2019; Snell, Swersky, and Zemel 2017; Vinyals et al. 2016).
Implementation. All the experiments are conducted with
PyTorch (Paszke et al. 2017). The NVIDIA GeForce RTX
2080 Ti GPU is used. Except for few crucial ones to be stud-
ied in the next section, we determine the values of most hy-
perparameters by referring to related works (Khodadadeh,
Boloni, and Shah 2019; Finn, Abbeel, and Levine 2017) or
our empiricism. When hyperparameter tuning is involved,
the preferred values are determined on the validation set,
then directly applied on the test set.

4.1 UMPLA on the Omniglot dataset

The Omniglot (Lake et al. 2011) is a dataset of handwritten
characters, with 1623 characters from 50 alphabets. Every
character has 20 instances, each drawn by a different person.
Important meta-learning hyperparameters. Like Kho-
dadadeh (Khodadadeh, Boloni, and Shah 2019), we notice
that the meta-batch size (Npeto) and number of adaptations
(Nagpt) are two important hyperparameters in the meta-
learning process. Likewise, we empirically study the effect
of varying them on the validation accuracy of the network.
The experimental results are shown in Table 1. Based on the
results, we fix Nyeta = 32 and Npgpe = 1 for subsequent
experiments.

Soft versus hard pseudo labeling. In Section 3.2, we
present both soft and hard pseudo labeling strategies. Now
we compare them on the Omniglot validation set, by inves-
tigating their performance and behavior in both 5- and 20-
way low-shot tasks. The classification accuracies are charted
in Table 2. Interestingly, the soft labels consistently outper-
form the hard ones on 5-way tasks in both 1- and 5-shot
settings. Inversely, the hard labels consistently outperform
the soft ones on 20-way tasks. Especially when using the
sentinel model fit to the most representative classes of the
validation set (to be detailed next), the performance gaps are
considerable. We conjecture the reason is that, for high-way
tasks (e.g., 20 classes), the soft labels may be distributed
too much and thus become flat and sparse. These flat and
sparse distributions cannot provide effective supervision for
network training using the Kullback-Leibler divergence loss
(Equation (3)). In this case, the one-hot hard labels succeed.
In contrast, for low-way tasks (e.g., five classes), the soft
labels are able to maintain the prominence as needed, and

Table 2: The effects of (i) soft versus hard pseudo labeling
and (ii) different sentinel models on Omniglot validation ac-
curacy (in %). Results of UMTRA (our reimplementation)
are also presented for reference. (I, K) indicates N-way
K -shot learning.

Pseudo (N, K)

labeling [ (5. 1) [ (5,5 [ (20,1) | (20,5)
Sentinel: pretrained with representative classes
Soft 78.23 | 93.09 | 57.96 83.45
Hard 73.86 | 90.34 | 66.26 88.22

Sentinel: pretrained with random classes
Soft 76.78 | 92.18 | 56.70 82.40
Hard 75.10 | 90.60 | 56.85 84.29
Sentinel: randomly initialized
Soft 75.26 | 91.52 | 36.41 50.50
Hard 71.92 | 89.54 | 53.00 81.93
UMTRA

N/A ] 76.14 [ 90.92 | 64.46 | 8721

meanwhile exploit the full spectrum of interclass correla-
tions (Lake et al. 2011; Wei et al. 2020). Accordingly, better
performance is achieved by the soft labels.

Based on this experiment, we will use soft labels for 5-
way tasks, and hard labels for 20-way tasks when later eval-
uating our proposed method on the test set.

Effect of connecting with target tasks. As aforementioned,
it is prohibitive to repeat the entire meta-learning process
for each of the randomly sampled low-shot learning tasks
for performance evaluation. Instead, we opt to pick the most
representative classes as delegates of the classes in these tar-
get tasks. These representative classes are used to pretrain
the sentinel model for pseudo label generation. To study the
effect of connecting with the (delegate) classes of the tar-
get tasks on performance, we experiment with two alter-
native sentinel model settings: (i) the sentinel model is fit
to randomly selected classes, and (ii) it is directly used for
pseudo-label generation after random initialization (i.e., un-
trained). The results are presented in Table 2. As expected,
the best performance is achieved with the sentinel model fit
to most representative classes, whereas the worst is produced
by the randomly initialized model. In addition, the perfor-
mance gaps range from ~1% to above 10%—the more dif-
ficult the tasks, the larger the gaps. Lastly, our best results
are better than those of UMTRA. There results validate our
motivation in connecting with the target tasks: by bridging
the meta-learning process and target learning task, low-shot
performance on the latter can be boosted.

Comparison with other methods. Finally on the test set,
we evaluate the performance of the proposed UMPLA. The
results are presented in Table 3. Above all, UMPLA sub-
stantially outperforms training from scratch and vanilla deep
learning with the pseudo labels (note the latter mostly per-
forms worse than the former). This indicates that UMPLA
makes effective use of the unlabeled dataset as well as the
pseudo labels. In addition, UMPLA achieves the best results



Table 3: Omniglot test accuracies (in %) of various meth-
ods. (N, K) indicates N-way K-shot learning. “Embed-
ding” column indicates the adopted unsupervised embed-
ding algorithm. “N/A”: not applicable or available.

Table 4: MinilmageNet test accuracies (in %) of various
methods. (N, K) indicates N-way K-shot learning. “Em-
bedding” column indicates the adopted unsupervised em-
bedding algorithm. “N/A”: not applicable or available.

| | (V. K) ] | (V. K) |
\ Method \ Embedding \ 5, 1) \ 5,5) \ (20, 1) \ (20, 5) \ \ Method \ Embedding \ G5, 1) \ 5,5) \ (5, 20) \ (5, 50) \

Training from scratch N/A 5250 | 74.78 | 2491 | 47.62 Training from scratch N/A 27.59 | 3848 | 51.53 | 59.63
Vanilla pseudo label N/A 29.80 | 4491 | 2592 | 4532 Vanilla pseudo label N/A 27.56 | 35.32 | 47.89 | 54.70
knn-nearest neighbors BiGAN 49.55 | 68.06 | 27.37 46.70 knn-nearest neighbors BiGAN 25.56 | 31.10 | 37.31 43.60
Linear classifier BiGAN 48.28 | 68.72 | 27.80 | 45.82 Linear classifier BiGAN 27.08 | 33.91 | 44.00 50.41
MLP with dropout BiGAN 40.54 | 62.56 | 19.92 | 40.71 MLP with dropout BiGAN 2291 | 29.06 | 40.06 | 48.36
Cluster matching BiGAN 43.96 | 58.62 | 21.54 | 31.06 Cluster matching BiGAN 24.63 | 29.49 | 33.89 | 36.13
CACTUs-MAML BiGAN 58.18 | 78.66 | 35.56 | 58.62 CACTUs-MAML BiGAN 36.24 | 51.28 | 61.33 | 66.91
CACTUs-ProtoNets BiGAN 54.74 | 71.69 | 33.40 | 50.62 CACTUs-ProtoNets BiGAN 36.62 | 50.16 | 59.56 | 63.27
knn-nearest neighbors ACAI 57.46 | 81.16 | 39.73 66.38 knn-nearest neighbors DC 28.90 | 42.25 | 56.44 63.90
Linear classifier ACAI 61.08 | 81.82 | 43.20 66.33 Linear classifier DC 29.44 | 39.79 | 56.19 65.28
MLP with dropout ACAI 51.95 | 77.20 | 30.65 | 58.62 MLP with dropout DC 29.03 | 39.67 | 52.71 60.95
Cluster matching ACAI 5494 | 71.09 | 32.19 | 4593 Cluster matching DC 22.20 | 23.50 | 24.97 | 26.87
CACTUs-MAML ACAI 68.84 | 87.88 | 48.09 | 73.36 CACTUs-MAML DC 39.90 | 53.97 | 63.84 | 69.64
CACTUs-ProtoNets ACAI 68.12 | 83.58 | 47.75 | 66.27 CACTUs-ProtoNets DC 39.18 | 53.36 | 61.54 | 63.55
MAML (supervised) N/A 98.7 99.9 95.8 98.9 UMTRA N/A 39.93 | 50.73 | 61.11 67.15
ProtoNets (supervised) N/A 98.8 99.7 96.0 98.9 UMPLA (ours) N/A 38.56 | 53.98 | 64.93 69.97

MAML (supervised) N/A 48.70 | 63.11 N/A N/A

ProtoNets (supervised) N/A 49.42 | 68.20 N/A N/A

for all the four task settings (i.e., different combinations of
N and K for N-way K-shot learning), surpassing the exist-
ing SOTA (UMTRA (Khodadadeh, Boloni, and Shah 2019))
with clear margins. The performance gaps range from 1.53%
to 5.18%, and are larger for the more difficult, one-shot
learning tasks. These results validate the benefit of connect-
ing the meta-learning process with target tasks, especially
considering that our method is built on top of UMTRA.
Lastly, the supervised approaches yield the best results, fol-
lowed by the semi-supervised, and the unsupervised. This
is expected, given different quantities of ground truth labels
used for representation learning. However, the gaps are nar-
rowing, especially for the 5-shot tasks.

4.2 UMPLA on the minilmageNet dataset

Settings. The minilmageNet dataset, originally introduced
by Vinyals (Vinyals et al. 2016), is derived from the larger
ILSVRC-12 dataset (Russakovsky et al. 2015). It consists
of 100 classes each with 600 color images of size 84 x84
pixels. Similar to the Omniglot dataset, we conduct a coarse
grid search on the validation set for values of the hyperpa-
rameters Niepa and Nagpe. It turns out that UMPLA is rel-
atively insensitive to these two hyperparameters on minilm-
ageNet, and we set Npeta = 24 and Nuqpe = 5 for testing.
Meanwhile, based on the experience on Omniglot, we de-
cide to use most representative classes for pretraining the
sentinel model. In addition, as all the experiments on mini-
ImageNet are 5-way, we choose to use soft pseudo labels.

Results. The minilmageNet test-set accuracies are presented
in Table 4. Again, the results validate that our proposed
UMPLA can make effective use of the unlabeled data (com-
paring against training from scratch and vanilla deep learn-
ing with the pseudo labels), and that it generally improves
performance upon randomly assigned labels (overall better
performance over UMTRA (Khodadadeh, Boloni, and Shah
2019) in three of the four low-shot settings). Meanwhile,
UMPLA achieves competitive performance against variants

of CACTUs (Hsu, Levine, and Finn 2018). Yet, our pseudo
labeling scheme does not impose the overhead of producing
unsupervised embeddings for all the unlabeled images, nor
of the repeated clustering.

5 Conclusion and future work

This work presented UMPLA, a novel algorithm for unsu-
pervised meta-learning for low-shot image recognition. To
improve performance on a target low-shot learning task,
UMPLA innovatively bridged the model-agnostic meta-
learning (MAML) process with the target task. The bridg-
ing was achieved by fitting a sentinel model to the limited
training data in the low-shot task, and using the model to
generate pseudo labels for construction of MAML tasks.
Our experiments validated that, even fit to very limited
data, the sentinel model was able to produce reasonable
pseudo labels for this purpose. Experiments showed that
UMPLA not only could effectively utilize the unlabeled
dataset, but also clearly improved performance upon ran-
domly assigned pseudo labels, as we hypothesized. In ad-
dition, UMPLA achieved superior/competitive performance
to recent SOTA approaches on the Omniglot and minilm-
ageNet benchmarks. Besides, UMPLA also expanded the
practical application range of existing approaches by only
requiring the unlabeled dataset to be large in quantity.

A particular phenomenon that caught our attention was
that the soft and hard pseudo labels succeeded in different
N-way settings. In the future, it would be interesting to ex-
plore strategies to adaptively select either of them or to ef-
fectively integrate them for varying scenarios.
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