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Abstract

In recent years, the cryptocurrency market has received
widespread attention due to its high returns. Technicians
realize that artificial intelligence technology can be used
for quantitative trading of cryptocurrencies. However,
the volatility and uniqueness of the cryptocurrency mar-
ket make it face challenges. Our research uses deep rein-
forcement learning (DRL)—Proximal Policy Optimiza-
tion(PPO) to automatically develop quantitative trad-
ing strategies through intelligent trading agents. And
we also combined Long short-term memory(LSTM) for
model optimization. In order to better simulate the real
market environment, we collected high-frequency data
in the cryptocurrency market for model training. After
processing, our financial data will be in the form of a
sparse matrix, which is of great help to the model to
extract information. Experimental results demonstrate
that our model can extract robust market features and
be adaptive in different markets.

Introduction
Cryptocurrency is a rapidly growing asset, which was
born in 2009 and gradually came into the public view af-
ter 2017, with a total market capitalization of over U.S.
$1,540,000,000,000 on March 1st, 2021. It utilizes a de-
centralized technology called blockchain to get rid of the
control of corporate entities like traditional currency. Nowa-
days, there are over 3000 kinds of cryptocurrency and more
and more large technology enterprises and investment com-
panies take it as an important asset allocation component.

Prior to the work of Jing-Zhi Huang (Lillicrap et al. 2015),
the role of pure data-driven analysis in cryptocurrency pre-
diction was not taken seriously, which indicates that bit-
coin price can be predicted by analyzing technical indexes
and big data, with little effect from fundamentals, providing
a theoretical basis for machine-learning-based predictions.
Since neural networks develop, it is possible to construct
complex nonlinear functions and capture the long-term de-
pendence of sequences. Neural networks have been boost-
ing bitcoin predictions. References (Mallqui and Fernandes
2019)and(McNally, Roche, and Caton 2018) both build an
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artificial neural network (ANN) to predict the price of cryp-
tocurrency, but ( (McNally, Roche, and Caton 2018) concen-
trates on ensemble algorithms for direction prediction, rather
than price prediction, which can not give references for high-
frequency trading directly. Although in recent years of re-
search, various models have achieved good results, they still
have shortcomings: (1) Some popular algorithms, such as di-
lation causal convolution, self-attetion, etc., are not used. By
introducing the most advanced structure, the forecast results
may be significantly improved. (2) In the previous method,
it is divided into two steps. Firstly, the model is used for
prediction, and then the prediction signal is input into the
relevant module for trading. This is a huge shortcoming.

Reinforcement learning (RL) seems to be the natural
choice for optimal transaction execution problems because it
enables trading agents to interact with the market and learn
from its experience, and it makes fewer assumptions about
price dynamics than closed-form solutions. RL can integrate
forecasts and transactions into a model, which greatly im-
proves efficiency, and can add some artificially defined con-
straints at will, which is very helpful to improve the effect of
the model.

In this study, a novel framework of automatically gener-
ating high-frequency in our quantitative trading framework,
there are three main components. The first part is the pre-
processing of the data. We process the original data into
a sparse signal matrix, and the sparseness of the data will
make the model better extract features. The second part is
the LSTM algorithm part. This part mainly deals with the
dependence of time series data. Using LSTM is of great help
to giving more accurate trading signals. The third part is the
PPO algorithm part. Through the continuous interaction be-
tween the agent and the environment, the framework can se-
lect the optimal action, evaluate it according to the reward
function, and then continuously optimize the subsequent be-
havior. Experiments have shown that our framework is very
suitable for the case of large data noise such as the cryp-
tocurrency trading market.

Related work
Reinforcement learning (RL) seems to be a natural choice
for the optimal trade execution problem, as it enables the
trading agent to interact with the market and to learn from its
experiences and has fewer assumptions on the price dynam-



ics than the closed-form solutions. Nevmyvaka, Feng, and
Kearns have published the first large-scale empirical appli-
cation of RL to optimal trade execution problems (Nevmy-
vaka, Feng, and Kearns 2006). Hendricks and Wilcox pro-
pose to combine the Almgren and Chriss model (AC) and
RL algorithm and to create a hybrid framework mapping the
states to the proportion of the ACsuggested trading volumes
(Hendricks and Wilcox 2014).

To address the high dimensions and the complexity of
the underlying dynamics of the financial market, (Ning, Lin,
and Jaimungal 2018)adapt and modify the Deep Q-Network
(DQN) (Ning, Lin, and Jaimungal 2018) for optimal trade
execution, which combines the deep neural network and
the Q-learning, and can address the curse of dimensional-
ity challenge faced by Q-learning. Lin and Beling(Lin and
Beling 2020) analyze and demonstrate the flaws when ap-
plying a generic Q-learning algorithm and propose a mod-
ified DQN algorithm to address the zero-ending inventory
constraint. The policy gradient algorithm is a policy func-
tion, and then uses gradient descent to update the param-
eters of the network. The core idea of police gradient is
through parameters θ to control the action strategy of the
agent, which is expressed as π(θ) Theoretically, when the
model is known, the value expectation of the strategy can
be solved. However, usually, the environmental model is un-
known, so the actual expected value can be obtained through
the trajectory value of statistical data. The gradient rise (fall)
method is adopted to optimize the strategy period value
to achieve the goal of optimizing the strategy parameters.
Based on (Mallqui and Fernandes 2019)(Munim, Shakil,
and Alon 2019)appling the neural network auto-regression
(NNAR) to complete the-next-day prediction and finds that
NNAR is inferior to ARIMA in daytime prediction, demon-
strating that naive neural networks are possibly not useful
than traditional methods. With the development of Recur-
rent Neural Networks (RNNs), the long sequence predic-
tion method has been developed unprecedentedly. LSTM
provides a more credible method for long-time prediction.
(McNally, Roche, and Caton 2018) compare the capabil-
ity of capturing longer range dependencies between LSTM
and SVR and proves LSTM is more suitable for time-series
prediction. Deep learning algorithms have been widely ex-
ploited to explore the law of tendency in bitcoin price.

However, the researchers in previous research all use
manually designed attributes which adds a further burden
to the system development in the real-world, since feature
engineering requires significant domain knowledge and ef-
forts. We desire an end-to-end optimal trade execution sys-
tem without feature engineering.

In this paper, We propose an end-to-end optimal trade ex-
ecution framework which can account for temporal corre-
lations, and also use a sparse signal matrix to enhance the
data.

Proposed Solution
The Proximal Policy Optimization(PPO) algorithm is a pol-
icy gradient algorithm proposed by OpenAI (Schulman et al.
2017). PPO algorithm proposes a new objective function,
which can be updated in a small batch in multiple training

Figure 1: Overview of classes of reinforcement learning al-
gorithms.

steps, and solves the problem that the step size is difficult to
determine in the Policy Gradient Methods. If the step size is
too small, the training time will be too long. If the step size is
too large, the useful information will be masked by noise, or
the performance will be disastrous and difficult to converge.
The overall framework of reinforcement learning(Guan et al.
2020)is shown in Figure 1.

Partially Observable MDP
In this subsection, we introduce domain-specific character-
istics in QT and further explain the reason why it is suit-
able to model the whole QT process as a partially observ-
able Markov Decision Process (POMDP). In the financial
market, security prices are formed by orders from bulls (in-
vestors with optimistic market outlooks) and bears (investors
with pessimistic market outlooks). At a high level, prices
are influenced by macroeconomic and microeconomic ac-
tivities. The unpredictable events and trading behaviors lead
to the noisy financial market. Thus We cannot directly ob-
serve the actual market states. For instance, no one knows
exactly whether a piece of good news leads the price up or
whether orders can be executed at expected prices. The only
data we can use are historical prices and volumes. In other
words, the price and volume is a part of the underlying mar-
ket state. The technical indicators in technical analysis can
be treated as the observations of the prospective price trends.
In general, QT is exactly a sequential decision-making prob-
lem about what and when to trade. The POMDP is a realis-
tic generalization of a Markov Decision Process (MDP) for
modeling the QT problem. In general, an MDP is a 5-tuple
⟨S,A, T,R, γ⟩. Specifically, S is a finite set of states. A is a
finite set of action set. T : S × A × S → [0, 1] is a state
transition function, which consists of a set of conditional
transition probabilities between states. R: S × A → R is
the reward function, where R is a continuous set of possible
rewards. R indicates the immediate reward from taking an
action in a state. And γ ∈ [0, 1) is the discount factor. For
the deterministic policy, the goal of an agent is to learn a
policy µ : S

Proximal Policy Optimization
PPO alternates between sampled data through interaction
with the environment, and uses random gradient rise op-
timization to replace the objective function. The standard
strategy gradient method performs gradient update for each
data sample, while PPO adopts a new objective function,



Figure 2: Clip function

which can realize multi cycle and small batch update. PPO
has yielded state-of-the-art results in policy search, a sub
field of reinforcement learning, See Figure 2, with one of
its key points being the use of a surrogate objective func-
tion to restrict the step size at each policy update(Zhu and
Rosendo 2020). PPO-clip updates policies via:

θk+1 = argmax
θ

Es,a∼πθk
[L (s, a, π)]) (1)

where π is the policy, θ is the policy parameter,k is the
kth step, a and s are action and state respectively. It typically
takes multiple steps of SGD to optimize the objective L:

min
(
πAπθk(s, a), clip (π, 1− ϵ, 1 + ϵ)Aπθk(s, a)

)
(2)

In this way, the clip function avoids excessively large
policy updates and reduces the problem of catastrophic
steps(Melo and Máximo 2019).

Problem Formulation
In this section, we provide the PPO formulation for the op-
timal trade execution problem and describe the state, action,
reward, and the algorithm used in the experiment.

State:Due to the huge noise of financial data, the effect of
using original data is often not good, so we have processed
it into a sparse signal matrixWe invited the quantitative ana-
lysts on the ground to formulate the most appropriate finan-
cial signals for us.

Action:To compare different trading strategies, we stipu-
late that the agent makes trades with the minimum security
amount. The trading action here is defined as a continuous
probability vector at = [Plong, Phold, Pshort].

Reward:Using the reward function in DRL algorithm
(Moody and Saffell 1999) for reference, we select the dif-
ferential Sharpe ratio (D) as our reward function. Here, the
Sharpe ratio (Sr) (Sharpe 1966) is an evaluation for risk-
adjusted return. The Sharpe ratio (Sr) indicates the ratio of
the excess return (cumulative return minus risk free return)
over one unit of total risk. Without the loss of mathematical
generality, at time t, Srt is defined as:

Srt =
E [Rt−n:t]

σ [Rt−n:t]
(3)

Assumption: The most important assumption in our ex-
periment is that the actions that DRL agent takes have only
a temporary market impact, and the market is resilient and
will bounce back to the equilibrium level at the next time
step. This assumption also suggests that the DRL agent’s ac-
tions do not affect the behaviors of other market participants.

Figure 3: PPO Architectures

Figure 4: LTSM Modules

The market resilience assumption is the core assumption of
this article and also all previous research applying RL for
optimal trade execution problems. The reason is that we are
training and testing on the historical data and cannot account
for the permanent market impact. However, the cryptocur-
rency we choose in the article are liquid, and the actions are
relatively small compared with the market volumes. There-
fore, the assumption should be reasonable.

Most of the assumptions are also the core assumptions
in previous research because we need a highfidelity market
simulation environments or data collected by implementing
the DRL algorithm in the real market rather than historical
data to account for these factors such as order delays, per-
manent market impact, and agent interactions, etc.

PPO Architecture
The selected network architectures are illustrated in Figure
3.

Network Architecture: In the PPO algorithm, we have
implemented two network architectures: 1) FCN with two
hidden layers, each hidden layer has 128 hidden nodes, and
each hidden node has ReLU activation function. The in-
put layer has 22 nodes, including private attributes (such
as remaining inventory and time consumption) and LOB at-
tributes (such as level 5 bid / ask prices and volumes). Af-
ter that, we concatenate the model output with previous re-
wards and actions and feed them to an LSTM network with



Table 1: Model Performances Comparison.

Method Return rate Sharp ratio Worst loss MDD ratio MDD Duration Profit/loss ratio Risk ratio

PPO+LSTM 7.98% 7.87% -2.42% 1.10% 2310 99.15% 7.23

PPO -5.84% 7.66% -15.02% 3.43% 3478 94.90% -23.23

DDPG -6.98% 7.89% -22.16% 25.32% 3501 95.57% -5.01

DQN -16.05% 6.30% -23.24% 24.25% 3491 95.64% -0.66

a cell size of 128. The LSTM outputs the policy πt and state-
value function πt 2) FCN with the same settings as 1), except
that we stack the nearest LOB attributes as model input. We
choose Adam optimizer for weights optimization(Lin and
Beling 2020).

Long Short-Term Memory: Long short term memory
(LSTM) is a special RNN, which is mainly used to solve the
problems of gradient disappearance and gradient explosion
in the process of long sequence training. LSTM networks are
composed of a number of cells, and an input gate, an output
gate, and a forget gate within each cell regulate the flflow
of information into and out of the cell, as demonstrated in
Figure 4. In short, LSTM can perform better in longer se-
quences than ordinary RNN.

Experiments
In this section, we present the proposed framework’s perfor-
mance. To verify the effectiveness of the proposed frame-
work, we compare it with the PPO, DDPG, DQN model as
well as several DRL models. Our proposed framework con-
verges fast and has significantly outperformed the baseline
models on cryptocurrency during the backtesting. In our ex-
periment, we apply DeepMind’s framework to assess the sta-
bility in the training phase and the performance evaluation in
the backtesting(Mnih et al. 2015).

Experimental Setup

Datasets: We’re using the data of the most important cryp-
tocurrency, which is Bitcoin. We selected five minutes of
high-frequency trading data that lasted from 2018/5/1 to
2018/9/1. We also did some processing on these data.

Algorithms: We use several common models as a con-
trast. To present these methods,we list them as follow.

• PPO: The PPO algorithm uses the 32 states and shaped
rewards defined in(Lin and Beling 2019).

• DDPG:The DDPG algorithm integrates deep learning
neural network with Deterministic Policy Gradient, pro-
posed by (Lillicrap et al. 2015)

• DQN:The modified DQN algorithm proposed by(Lin and
Beling 2019).

Trainning and Stability: Assessing the stability and the
model performance in the training phase is straightforward
in supervised learning by evaluating the training and testing
samples. However, it is challenging to evaluate and track the
RL agent’s progress during training,since we usually use the
average episode rewards gained by the agent over multiple
episodes as the evaluation metric to track the agent’s learn-
ing progress. The average episode reward is usually noisy
since the updates on the parameters of the policy can se-
riously change the distribution of states thatthe DRL agent
visits.

In Figure 6,we observe that the framework converge fast
in 100 epochs.The reward function can reflect the degree of
convergence. Although it is still fluctuate before 200 epochs,
it tend to converge and smooth finnally. It indicates that the
framework has good convergence effect in training.

Main Evaluation and Backtesting: We will use five-
minutes data to conduct experiments. Five minutes bar re-
flects fluctuations within 5 minutes. For RL, it is difficult
to keep action continuity on such highfrequency data. But
in the real financial market, minutefrequent data are quite
common. For better simulation, we take into accounts prac-
tical constraints, including the transaction fee and the con-
stant slippage. Furthermore, we assume that each order can
be traded in the opening time of five minutes bar and the
reward is calculated in the closing time. We initialize our
account with $ 500,000 in cash at the beginning of the test.
The most widely used criteria of the interest in QT are used
to evaluate the policy performance:

• Total return rate Tr:=(Pend − Pstart)/Pstart(P is the
total value of the position and cash).

• Sharpe ratio (Sharpe 1966) Sr:=[r]/σ[r] considers ben-
efits and risks synthetically and reflects the excess return
over unit systematic risk.

• Maxium Drawdown ratio (Magdon-Ismail and Atiya
2004) Mdd:= max(Pi − Pj)/Pi, j > i measures the
largest decline in history and shows the worst possible
scenario.

• Worst loss Worst loss= Pworst/Pstart , Maxium loss
over investment time.

• Maxium Drawdown Duration Maxium Drawdown du-
ration describes the time it takes for holding value to
reach a new high from the start of retracement.



Figure 5: The comparison of Models’ profit.The PPO used LSTM is better than other methods obviously.

• Profit/loss ratio xp/xl ,xpis the average of the gains over
time, and Xl is the average of the losses over the same pe-
riod , The profit/loss ratio is the average profit on winning
trades divided by the average loss on losing trades over a
specified time period.

• Risk ratio:Pend/Maxium Drawdown ratio,compares the
potential profit of a trade to its potential loss.

Figure 5 shown that the PPO used LSTM has better per-
formance than other methods. Not only can it achieve promi-
nent profit, with steps growing, but also can keep stable
and tend to increase.Except that, our framework also per-
forme well in the others hand. In the table 1,we specific con-
duct experiment in detail, and compare various indicators to
present our framework’s performance. The tabel shown that
our framework get first-class grade except Sharp ratio. For
all that, the DDPG model just better than our method 0.02%.

Conclusion
In this article, we propose an end-to-end optimal trade ex-
ecution framework based on PPO. In our experiments, we
demonstrated that our trading framework performed better
than PPO, DQN and DDPG in almost all metrics. Addition-
ally, we have also demonstrated that DRL agents are able
to learn good execution strategies even with the sparse re-
wards. In addition, our data processing is also effective, and
it has been proved that priori knowledge of professionals is
needed in many fields.

In the future, we are planning to relax the assumption that
the DRL agent’s actions are independent of other market
participants’ actions and model the interactions of multiple
DRL agents and their collective decisions in the market.

Figure 6: The reward function of PPO used LSTM,reflecting
the fluctuation of the framework’s training process.The
model converge fast in 100 epochs.
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