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Abstract
Object detection is gaining more and more attention and ap-
plications as a common area of deep learning. With the rapid
development of Intelligent Transportation Systems (ITS), a
greater demand for the detection and classification of traf-
fic scenes has arisen. In addition to the analysis of static ob-
jects such as traffic signs, the detection of two types of dy-
namic objects, namely vehicles and pedestrians, has become
an even more pressing problem. Furthermore, ITS also needs
to learn more detailed information from regular object detec-
tion tasks. Therefore, the detection of license plates of mo-
tor vehicles and faces of pedestrians is also a vital goal to
be achieved in our project. In this work, we proposed an opti-
mized robust real-time joint object detection model (R2Joint),
which is capable of detecting common types of vehicles si-
multaneously, and recognizes pedestrians’ faces and license
plates in real time. R2Joint is able to avoid the degradation
of detection due to Non-Maximum Suppression (NMS), thus
performs better under joint detection task. To achieve more
robustly, R2Joint also uses adversarial attack samples for
training and modified the network structure to better handle
perturbations and noise in data. Our model achieves 62.2%
mAP with 71.4FPS, with sufficient performance for the ap-
plication.

Introduction
Deep learning (LeCun et al. 1998) has achieved remark-
able developments in many fields, such as object detection
(Bochkovskiy, Wang, and Liao 2020), semantic segmenta-
tion (Nirkin, Wolf, and Hassner 2021), and machine trans-
lation (Vaswani et al. 2017). As the most common and in-
tuitive application area, computer vision has also gained
widespread attention, becoming an important field of arti-
ficial intelligence. Computer vision, which is the science of
computers and software systems, aiming at recognizing and
understanding images and scenes. It is consists of many as-
pects, including image recognition, object detection, image
generation, image super-resolution, etc.

Object detection, considering its large number of appli-
cations, can be regarded as the most profound branch in
the field of computer vision. Object detection, often used
as a collective term for both detection and recognition pro-
cesses, refers to the process of recognizing and classifying
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objects in a given scene or image. It has been widely used in
scenes such as multi-object recognition, face detection, ve-
hicle detection, pedestrian tracking and so on. Intersecting
with other disciplines, object detection can also be applied
to more fields.

Moreover, considering the rapid increase of motor ve-
hicles, tremendous pressure has been brought to the pub-
lic traffic, and the frequent road congestion and traffic ac-
cidents have caused great insecurity and increasing com-
plexity in the traffic environment. Therefore, the combina-
tion of artificial intelligence technology to improve the traf-
fic environment and alleviate traffic pressure has become a
more urgent need nowadays. Intelligent Transportation Sys-
tem (ITS) has emerged to meet this demand by using and
combining various information technologies to help improve
traffic by means of artificial intelligence.

To combine with, object detection for pedestrian and ve-
hicle becomes a pressing issue. Recently, the object detec-
tion algorithm has made great breakthroughs. Based on the
network architecture, the most popular deep learning-based
algorithms can be divided into two categories, namely ”two-
stage” and ”one-stage” methods. The two-stage method,
which contain two separate detection and classification
steps, is more accurate but relatively slower. The one-stage
method, whose networks directly detect and classify objects,
is capable of achieving higher speeds, but with reduced per-
formance. In this work, we choose a basic one-stage method
and improve its performance based on it.

After the object detection step, we also consider adding
structured analysis of the face, such as analyzing whether
the person is a male or a female, whether it is a smiling face,
and so on. In addition, we also consider adding the process-
ing of license plate (LP) recognition. Automatic LP Recog-
nition is a challenging and important task which is used in
traffic management, digital security surveillance and vehicle
recognition, which closely related to our task. The robust au-
tomatic LP recognition system needs to cope with a variety
of environments while maintaining a high level of accuracy.
In other words, this system should work well in natural con-
ditions.

To improve the robustness of the algorithm, considering
the complexity of the traffic environment, we design adver-
sarial samples for training. We add noise to the commonly
used data images, which helps the network to gain better



stability and make it less vulnerable to attacks. Our pro-
posed R2Joint model tries to maximize the predict confi-
dence while minimize the detection loss. Tested under care-
fully designed attack samples, the improved algorithm was
able to improve its mAP by 62.6% over the original algo-
rithm.

In summary, the main work of this paper are three fold:

• Training a basic one-stage object detection model to de-
tect pedestrians and vehicles on traffic roads.

• Performing structural analysis on vehicle and pedestrian
information, identify the license plate data and facial data
within it.

• Using adversarial attack training methods to improve the
robustness of the proposed model.

Related Work
Object Detection Models
Deep learning (LeCun et al. 1998) helps object detection
models reach higher performance than basic methods, with
complex network architecture and sufficient training data. A
modern detector is usually composed of two parts, namely
the backbone and the detection head. The backbone, which
consists of layers, is aiming at extracting features from the
raw input. And the task of the detection head is to dict
classes and bounding boxes of objects. Different designed
backbones and detection heads can be adapted to different
hardware environments. For those detectors running on GPU
platform, their backbone could be VGG (Simonyan and Zis-
serman 2014), ResNet (He et al. 2016) or DenseNet (Huang
et al. 2017). On the other hand, when using in mobile or
CPU platform, family of MobileNet (Howard et al. 2017;
Sandler et al. 2018) and ShuffleNet (Zhang et al. 2018) are
more suitable.

Based on different detection head and structure, the object
detection algorithms are usually categorized into two kinds,
namely the one-stage methods and the two-stage methods.
The two-stage algorithms, with the first step of generation
and extraction of candidate regions and regional features,
and the second step of classification based on regional fea-
tures. These two steps achieve detection and recognition re-
spectively, so it is called the two-stage method. The accu-
racy of this series of methods is relatively high, but the gen-
eration and extraction steps of candidate regions require a
large number of repeated operations, which consume more
resources and are slower, so it is difficult to achieve the effect
of real-time detection. The most commonly used two-stage
methods are the family of R-CNN (Girshick et al. 2014),
with R-CNN itself and improved methods like Fast R-CNN
(Girshick 2015), Faster R-CNN (Ren et al. 2015), R-FCN
(Dai et al. 2016), Libra R-CNN (Pang et al. 2019), etc. It is
also possible to make a two-stage object detector an anchor-
free object detector, such as RepPoints (Yang et al. 2019).

The other series of algorithms, one-stage methods, how-
ever, directly use single-stage regression to complete the
task of object detection and recognition, avoiding the most
time-consuming steps of candidate region generation and
extraction in two-stage based algorithms. They simplify the

network and thus significantly improve the inference speed.
Since one-stage methods reduce the size of models and hard-
ware resources consumption, they also potentially reduce
the recognition accuracy. Some commonly used methods in-
clude the series of YOLO (Redmon et al. 2016; Redmon and
Farhadi 2018) and SSD (Liu et al. 2016), whose networks
directly predict the categories and positions of different ob-
jects.

License Plate Recognition
In the earlier works on general LP recognition such as
(Anagnostopoulos et al. 2008), the pipeline consist of char-
acter segmentation and character classification stages:

• Character segmentation typically uses different hand
crafted algorithms, combining projections, connectivity
and contour based image components. It takes a binary
image or intermediate representation as input, thus char-
acter segmentation quality is highly affected by the input
image noise, low resolution, blur or deformations.

• Character classification typically utilizes one of the Op-
tical Character Recognition (OCR) methods which is
adopted for LP character set.

Since classification follows the character segmentation,
end-to-end recognition quality depends heavily on the ap-
plied segmentation method. In order to solve the problem
of character segmentation, deep learning-based solutions are
proposed. These kind of methods typically take the whole
LP image as input and produce the output character se-
quence. Recent work (Goodfellow et al. 2014) tries to ex-
ploit synthetic data generation approach based on Genera-
tive Adversarial Networks (Goodfellow et al. 2014) for data
generation procedure to obtain large representative license
plates datasets.

Adversarial Attack
Neural Networks are vulnerable to adversarial examples like
intentionally perturbed images (Szegedy et al. 2013). To
improve the robustness of network, various methods have
been proposed to generate adversarial samples (Goodfellow,
Shlens, and Szegedy 2014; Carlini and Wagner 2017). The
attack methods can be divided to two types. In the white-
box setting, both the network architecture and parameters
are available to the attacker. As for the black-box attack, the
attacker only has access to the model’s input and the pre-
dicted output, and the network itself is invisible. On the field
of object detection, a typical kind of attack is adversarial
patch (Brown et al. 2017), producing localized and universal
perturbations to an image by masking pixels. Another more
commonly used method is to add imperceptible noises (Xie
et al. 2017), as to generate perturbed images with carefully
designed noise, which is invisible to human.

The Proposed Method
We proposed the R2Joint, with robust real-time performance
on joint object detection and structural analysis. In the fol-
lowing subsections, we first introduce our basic model. Fol-
lowing, we propose improvements on the R2Joint model,



Figure 1: Our proposed model

Figure 2: Example of different types of license plates

which consists of two crux techniques: structural analysis
and adversarial attack.

Basic Model of R2Joint
Since our purpose is detecting common types of vehicles
simultaneously, and recognizing pedestrians’ faces and li-
cense plates in real time, the one-stage method is adapted.
As it avoids the most time consuming steps of candidate re-
gion generation and extraction, the inference speed is sig-
nificantly improved. As for one-stage object detectors, the
most representative models are the family of YOLO series.

Specifically, we used YOLO-v5 as our basic model, which
has been widely used recently, and its great power has been
proved. Compared to the former YOLO, it has smaller net-
work capacity, faster inference time and higher recognition
rate. Our dataset contains eight class: person, bicycle, car,
motorcycle, bus, truck, license plate, face. The first six types
of data are selected from COCO, as license plate data is
only selected from part of CCPD dataset (Xu et al. 2018),
and face data is selected from LFW dataset (Huang et al.
2007). The proportion of training set and verification set of
the first six categories is the proportion provided by COCO.
After the object detection step, we also add structural anal-
ysis of the face information, and the processing of license
plate recognition. Furthermore, to improve the robustness of
the algorithm, considering the complexity of the traffic en-
vironment, we design adversarial samples for training. The
whole process can be seen in Fig. 1.

Structural Analysis
After the object detection step, we use the structural anal-
ysis to get more information about what we have detected,
especially the license plate and the facial data.

Figure 3: The process of converting colors of license plates

License Plate Recognition There is a very efficient net-
work to help us to do this job, the LPRNet (Wang et al.
2020). It is a real-time framework for high-quality license
plate recognition supporting template and character inde-
pendent variable length license plates. However, we can-
not use the pre-training model directly, because it can only
recognize the blue plates, not working in the green plates
(Fig. 2).

For recognize the green plates correctly, a simple way
we can imagine is using a new dataset which contains the
green plates to train the proposed model. However, the draw-
backs of this approaches are also obvious, as once we want
to recognize a new color of license plate, the model has to
be retrained. We use another two steps approach to solve
this problem. First, we choose the license plates that color is
not blue. Second, we convert their colors to blue. In detail,
firstly, the license plate image is converted to the HSV color
space image, and the blue mask of the image is calculated.
Then, the number of non-zero elements (i.e. the number of
blue elements) of the mask is calculated. If the number is
greater than half of the total pixel points of the image, it is
considered as a blue license plate; otherwise, it is not a blue
license plate and needs to be converted. For license plate
images that are not blue, shadow removal, noise reduction
and binarization are carried out, and then the non-white parts
are filled with appropriate RGB values as blue, as shown in
Fig. 3.

Facial Information Extraction We use the MobileNet
(Sandler et al. 2018) as the main framework to extract the
information of human face. In the end of the MobileNet, we
add a modified classifier, which is implemented with a sim-
ple full-connected layer. We classify facial information ac-
cording to the following attributes: gender, age, is smile, is
wearing hat, is wearing glasses. We use the CelebA dataset
to train our model, and get more than 90% accuracy during
test, as shown in Fig. 4.

Adversarial Attack
Deep learning now has extremely superior performance, as
demonstrated in many work. However, because neural net-



Table 1: Performances in AP of each category and mAP (IoU thread=0.5) for our method. The baseline refers to the model
trained directly on this dataset using YOLO-v5.

Session Model
AP

mAP
Person Bicycle Car Motorcycle Bus Truck Face Plate

YOLO-v5 Baseline 0.625 0.335 0.406 0.549 0.653 0.38 0.986 0.983 0.606
YOLO-v5 R2Joint 0.633 0.371 0.727 0.429 0.465 0.369 0.974 0.995 0.622

Figure 4: Facial attributes

works are black-box methods, people has little understand-
ing of what the networks do. For some specially generated
adversarial samples, models usually show a certain degree
of vulnerability. Since the input form of deep learning al-
gorithm is a numerical vector, the attacker may design a
specific numerical vector to make the deep learning model
make misjudgment, which is called adversarial attack. Un-
like other attacks, adversarial attacks mainly occur when ad-
versarial data is constructed, and then the adversarial data
is fed into the deep learning model just like normal data to
obtain the deceptive recognition results.

To evaluate our model’s robustness, we generated some
adversarial samples and conducted experiments to observe
the performance of our YOLO-v5 model.

f =
1

∥Λ∥
∑
λ∈Λ

i : argmax(pi) = λE
{[

b0i ·max (pi)− 1
]2

+

(
bwi · bhi
W ×H

)2 }
(1)

We use the YOLO-v3 (Redmon and Farhadi 2018) model
which is trained on the COCO2017 dataset to generate
adversarial samples. Our approach is to attack the NMS
(Non-Maximum Suppression) mechanism of object detec-
tion, more specifically, maximizing the bounding box con-
fidence and minimize the size of bounding box (Equation
1.), reducing their IoU (Intersection over Union), so they
are harder to be filtered out by the NMS. This is a white-
box setting method. The results show that YOLO-v5 model

with adversarial attack mechanism has better detection per-
formance and robustness.

Experiments
We conducted experiments on a user-defined dataset, which
includes eight categories, of which the first six categories are
from the challenging MS COCO dataset (Lin et al. 2014),
the data of license plate category is from CCPD dataset (Xu
et al. 2018), and the data of face category is from LFW
dataset (Huang et al. 2007). We divide each dataset into the
training set and the validation set. The model will be trained
on the training set and tested on the latter. The ratio of train-
ing set data and verification set data of the first six categories
is following the setting under COCO dataset, and the ratio of
training set data and verification set data of face and license
plate categories is set to 5:1. We evaluate the performance
for R2Joint with three metrics: average precision (AP), in-
ference time and model size.

Implementation Details
We train R2Joint with SGD, setting the initial learning rate
of 1e − 4 with constant warm-up of 1k iterations and using
weight decay of 10−4 and momentum of 0.9. For our com-
parative experiment, we train for 300 epochs with a learning
rate drop by a factor of 10 at 100 and 200, respectively. Our
experiments were performed on a single Nvidia Tesla V100
GPU.

Results
We take the model trained by YOLO-v5 on the user-defined
data set as the baseline, and compare our method R2Joint
with it. As shown in Table. 1, the map of R2Joint is nearly
one percentage point higher than baseline, which shows that
our method is effective. Among them, the AP in car category
is 40% higher than baseline, which may be due to the impact
of adding countermeasure samples.

Because the model of our project is designed to be de-
ployed to the actual scenes, we also compare the parameter
size of the model and the time required for prediction, as
shown in Table. 2. Considering the balance of accuracy and
speed, our method is nearly 0.2ms slower than the fastest
YOLOv5s model in reasoning speed, due to the structural
analysis module. However, the inference speed of R2Joint
still reaches over 70fps, which meets the requirement of real-
time detection.

Ablation experiments
In order to verify the effectiveness of our structural analy-
sis and adversarial attack methods, we conducted ablation



Figure 5: Examples for the results of traffic scenes detection from our method.

Table 2: Comparison between R2Joint and the original
YOLO-v5 models.

Model Inference Time(ms) Model Size(MB)

YOLOv5s 0.9 7.2
YOLOv5m 1.7 21.1
YOLOv5l 2.7 46.5
R2Joint 1.4 14.0

experiments, as shown in Table. 3. The performance of the
model using both structural analysis and adversarial attack
is better than that of the model using only structural analysis
and baseline, which proves the improvement of R2Joint.

Influence on Structured Analysis We added a new mod-
ule to the original network to perform structured analysis
of license plate and face information. The results show a
0.2% improvement in our training effect, but considering
that adding the new module does not have an impact on the
recognition effect itself, the small improvement in the train-
ing effect probably comes from errors. However, by adding
the structured analysis module, our algorithm only slightly
reduces the recognition speed and is still able to achieve real-
time detection.

Influence on Adversarial Attack We compare the per-
formance effects of the original dataset with the expanded
dataset. The results show that the adversarial samples can
improve the recognition accuracy of our algorithm by about
1.6%. Considering that our adversarial samples are obtained
by mainly adding noise to the original images using a black-
box attack, it is not possible to design attack samples with
higher targeting. However, the results also show that our al-
gorithm is able to produce slightly improved performance
when trained in combination with adversarial samples. This
may be due to drift in the real traffic environment faced
by the model when it is actually used, which deviates from
our dataset. Therefore, by introducing adversarial samples,
it can help the model to obtain better robustness and thus
better performance in the real environment.

Table 3: Effects of each component in our work.

YOLO-
v5

Structural
Analysis

Adversarial
Attack

mAP Inference
Time(ms)

Model
Size(MB)

! 0.606 1.2 14.0
! ! 0.608 1.4 14.0
! ! ! 0.622 1.4 14.0

Visualization
To better demonstrate the superiority of R2Joint, we provide
several qualitative results in Fig. 5. We find that our method
can precisely detect plate and car at the same time, and faces
and people can also be detected at the same time.

Conclusion
In this paper, we proposed R2Joint, a robust real-time joint
detection model for traffic scenes. Our proposed model is
able to detect the vehicles and pedestrians in the traffic en-
vironment, and then identify license plates and face infor-
mation with structural analysis. To achieve this goal, we
first utilize YOLO-v5 in object detection step. After that,
we use structural analysis to obtain more in-depth infor-
mation, which consists of two important modules: license
plate recognition and facial information extraction. We im-
plement these modules with two sub-networks in R2Joint,
which achieves the effect of joint model detection. In or-
der to verify the robustness of our proposed model, we then
train R2Joint through adversarial attack. Experimental re-
sults and comparisons with YOLO-v5 demonstrate better
performance of the proposed R2Joint model, with real-time
detection performance and sufficient performance for the ap-
plication.
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