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Abstract

Keyphrase Prediction task aims to generating keyphrases that
can summarize the main idea of the source text. Most ex-
isting keyphrase generation approaches can be categorized
into two ways: extracting words from the source text, and
generating new words absent in the source text. Some meth-
ods utilize both of the ways, however, ignore the diver-
sity among these two ways. Inspired by the latest article
SGG: Learning to Select, Guide, and Generate for
Keyphrase Generation, which treats different ways with
different mechanism to get performance boosted, we decided
to reimplement the work to get a solution for this prob-
lem. Besides reimplementation, we’ll evaluate the method on
some other datasets that the origin paper didn’t try, to test
the generalization ability of the model. Experimental results
on four keyphrase generation benchmarks and a large scale
test dataset KP20k we added demonstrate the effectiveness of
the model, which outperforms the strong baselines for both
present and absent keyphrases generation.

Introduction
Keyphrases are short phrases that indicate the core informa-
tion of a document. The keyphrase generation (KG) problem
focuses on automatically producing a keyphrase set (a set
of keyphrases) for the given document.The keyphrase ex-
traction and generation can play an important role in aca-
demic field and information processing field. Because of
the condensed expression, keyphrases can benefit various
downstream applications including opinion mining, docu-
ment clustering, and text summarization.

Keyphrases of a document can be categorized into two
groups: present keyphrase that appears in the document and
absent keyphrase that does not appear in the document.
Recent generative methods for KG apply the attentional
encoder-decoder framework but they include the following
two problems:
• They complicate the identification of present keyphrases.

Specifically, they search for words over the entire prede-
fined vocabulary containing a vast amount of words (e.g.,
50,000 words) to generate a present keyphrase verbatim,
which is over parameterized since a present keyphrase
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can be simply selected from a continuous subsequence
of the source text containing limited words (e.g.,less than
400 words).

• They weaken the generation of absent keyphrases. Ex-
isting models for absent keyphrase generation are usu-
ally trained on datasets mixed with a large proportion
of present keyphrases. Table 1 shows that nearly half
of the training data are present keyphrases, which leads
to the extremely low proportions of absent keyphrases
generated by such a model, i.e., CopyRNN. The above
observation demonstrates that these methods are biased
towards replicating words from source text for present
keyphrase generation, which will inevitably affect the
performance on generating absent keyphrases.

To address the aforementioned problems, we choose to reim-
plement a Select-Guide-Generate (SGG) approach, which is
the state of the art method. The architecture of the Select-
Guide Generate (SGG) approach is illustrated in Figure.
The model is the extension of Seq2Seq framework which
consists of a text encoder, a selector, a guider, and a gen-
erator. The text encoder converts the source text x into a
set of hidden representation vectors {hi}Li=1 with a bidi-
rectional Long Short-term Memory Network (bi-LSTM)
(Hochreiter and Schmidhuber 1997), where L is the length
of source text sequence. The selector is a uni-directional
LSTM, which predicts the present keyphrase sequence yp

based on the attention distribution over source words. Af-
ter selecting present keyphrases, a guider is produced by a
guider to memorize the prediction information of the selec-
tor, and then fed to the attention module of a generator to
adjust the information it pays attention to. The selection-
guided generator is also implemented as a uni-directional
LSTM, which produces the absent keyphrase sequence ya

based on two distributions over predefined-vocabulary and
source words, respectively. At the same time, a soft switch
gate pgen is employed as a trade-off between the above two
distributions.

Related Work
The extraction and generation methods are two different re-
search directions in the field of keyphrase prediction. The
existing extraction methods can be broadly classified into su-
pervised and unsupervised approaches. The supervised ap-



proaches using treat keyphrase extraction as a binary classi-
fication task, which train the models with the features of la-
beled keyphrases to determine whether a candidate phrase is
a keyphrase. TF-IDF and TextRank are typical. (Medelyan,
Frank, and Witten 2009; Gollapalli, Li, and Yang 2017).
In contrast, the unsupervised approaches treat keyphrase
extraction as a ranking task, scoring each candidate using
some different ranking metrics, such as clustering (Liu et al.
2009), or graph-based ranking (Mihalcea and Tarau 2004;
Wang et al. 2014; Gollapalli and Caragea 2014; Zhang et al.
2017).

SGG work is mainly related to keyphrase generation ap-
proaches. CopyRNN (Rui et al. 2017) can not only generate
words based on the original text, but also generate words
that the original text does not have. The disadvantage is that
a large amount of annotation data is required. To address this
problem, Ye and Wang (2018) proposed a semi-supervised
keyphrase generation methods by leveraging both labeled
data and large-scale unlabeled samples for learning. In ad-
dition, CopyRNN uses the concatenation of article title and
abstract as input, ignoring the leading role of the title. To
address this deficiency, Chen et al. (2019) proposed a title-
guided Seq2Seq network to sufficiently utilize the already
summarized information in title. In addition, some research
attempts to introduce external knowledge into keyphrase
generation, such as syntactic constraints (Zhao and Zhang
2019) and latent topics (Wang et al. 2019).

These approaches do not consider the one-to-many(with
the concatenation of all keyphrases) relationship between
the input text and target keyphrases, and thus fail to model
the correlation among the multiple target keyphrases. To
overcome this drawback, Chen† et al. (2018) propose a new
sequence-to-sequence architecture for keyphrase generation
named CorrRNN, which captures correlation among mul-
tiple keyphrases. To avoid generating duplicate keyphrases,
Chen et al. (2020) proposed an exclusive hierarchical decod-
ing framework that includes a hierarchical decoding process
and either a soft or a hard exclusion mechanism. Similar to
the above, SGG separately models one-to-many relationship
between the input text and present keyphrases and absent
keyphrases, and our method deploys a guider to avoid the
generator generating duplicate present keyphrases.

Proposed Solution
To address the above problems, we reproduced the Select-
Guide-Generate approach, as shown in Figure 1, which can
deal with present and absent keyphrase generation sepa-
rately with different stages based on different mechanisms
(Zhao and Zhang 2019). Specifically, our model is imple-
mented with a hierarchical neural network which performs
Seq2Seq learning by applying a multi-task learning strategy.
This network consists of a selector at low layer, a gener-
ator at high layer, and a guider at middle layer for infor-
mation transfer. The selector generates present keyphrases
through a pointing mechanism, which adopts attention dis-
tributions to select a sequence of words from the source
text as output. The generator further generates the absent
keyphrases through a pointing-generating mechanism. Be-
cause present keyphrases have already been generated by the

Figure 1: The architecture of the proposed SGG which is
implemented with a hierarchical neural network.

selector, they should not be generated again by the genera-
tor. Therefore, a guider is designed to memorize the gener-
ated present keyphrases from the selector, and then fed into
the attention module of the generator to constrain it to focus
on generating absent keyphrases. We summarize our main
contributions as follows:
• We reproduce the SGG approach which models present

and absent keyphrase generation separately in different
stages, i.e., select, guide, and generate, without sacri-
ficing the end-to-end training through back-propagation.
The origin paper didn’t provide source code, however,
we reproduced the work through modifying the code pro-
vided in another paper(Chen et al. 2020).

• Extensive experiments are conducted to verify the effec-
tiveness of our model, which not only improves present
keyphrase generation but also dramatically boosts the
performance of absent keyphrase generation. In addition,
we apply this model to other large scale datasets that the
origin paper didn’t referred to verify the generalization
of the model.

In order to evaluate our reproduced model compre-
hensively, we test models on four widely used public
datasets from the scientific domain, namely Inspec(Hulth
and Megyesi 2006), Krapivin, SemEval 2010(Su et al. 2010)
and NUS(Nguyen and Kan 2007). We set maximal length of
source sequence as 400, 25 for target sequence of selector
and generator, and 50 for the decoders of all generation base-
lines. We choose the top 50,000 frequently occurred words
as our vocabulary. The dimension of the word embedding is
128. The dimension of hidden state in encoder, selector and
generator is 512. The word embedding is randomly initial-
ized and learned during training.

We initialize the parameters of models with uniform dis-



tribution in [-0.2,0.2]. The model is optimized using Ada-
grad with learning rate = 0.15, initial accumulator = 0.1 and
maximal gradient normalization = 2. In the inference pro-
cess, we use beam search to generate diverse keyphrases and
the beam size is 200 same as baselines.

Experiments
Some details and Results
We set all the parameters as stated in the paper, all the mod-
els are trained on a single RTX 2080Ti. In this section, we
present the results of present and absent keyphrase genera-
tion separately. The results of predicting present keyphrases
are shown in Table 1, in which the F1 at top-5 are given.
We first compare our reimplemented model with the con-
ventional keyphrase extraction methods. The results show
that our model performs better than extraction methods with
a large margin, demonstrating the potential of the Seq2Seq-
based generation models in automatic keyphrase extraction
task. We then compare our model with the generation base-
lines, and the results are shown in Table 2, which indicates
that our model still outperforms these baselines. The better
performance of SGG illustrates the necessity of distinguish-
ing the extraction approach and generation approach while
generating keyphrases. In the mean time, it also shows our
success in reproducing the behavior of the model.

Table 1: F1@5 results of predicting present keyphrases of different
models on four datasets. The performance data of the comparison
model in the chart are all taken from the original SGG paper, and
only the last line of SGG data is our experimental result.

method
Inspec Krapivin NUS SemEval
F1@5 F1@5 F1@5 F1@5

TF-IDF 22.1 12.9 13.6 12.8
TextRank 22.3 18.9 19.5 17.6
KEA 9.8 11.0 6.9 2.5

CopyRNN 27.8 31.1 33.4 29.3

CopyTrans+ 21.1 26.4 35.1 29.5

CorrRNN - 31.8 35.8 32.0

CatSeq 29.0 30.7 35.9 30.2

SGG 29.9 26.8 36.1 32.7

Results Analysis
From the results, it can be seen that there is a certain gap
between our reproducible results and the index results given
in the original paper.There are two reasons for speculation.

• First. When recording data in the original paper, the au-
thor used multiple tests to obtain the optimal results,
while we only ran it once. It is normal for the results to
fluctuate.

• Second. The original paper may have introduced some
tricks in code writing, which was not explained in the

Table 2: Recall@50 results of predicting absent keyphrases of dif-
ferent models on four datasets. The performance data of the com-
parison model in the chart are all taken from the original SGG pa-
per, and only the last line of SGG data is our experimental result.

Method Inspec Krapivin NUS SemEval

CopyRNN 10.0 20.2 11.6 6.7
CopyTrans+ 5.6 16.9 8.9 4.1
CorrRNN+ 8.5 15.2 8.0 3.5
CatSeq 2.9 7.4 3.1 2.5

SGG 10.7 22.1 11.9 4.8

paper.We lack trick to improve performance, so the final
data is not as good as the results shown in the paper.

In addition to reproducing the original paper, we also ap-
plied the model to other datasets to test the generalization
ability of the model.

Here, we select the KP20k dataset which is very popular
in the field of KeyPhrase generation. The dataset includes
almost 550k pieces of data in total, among which 20,000
pieces are used for verification and 20,000 pieces for test-
ing.This dataset is two orders of magnitude larger than the
four SGG datasets used in the original paper (i.e., 2000 In-
spec data and 2303 Krapivin data), so the results are less af-
fected by fluctuations and more reliable.The test results are
shown in Table 3.

Table 3: Since the original SGG paper did not show the perfor-
mance of other comparative models on KP20k,We select the data
of KP20k data set comparison model performance from another pa-
per Exclusive Hierarchical Decoding for Deep Keyphrase
Generation (Chen et al. 2020). Then we also make a comparison
with SGG. There is no comparison model for recall@50 in that pa-
per, so only SGG results are displayed under absent KP: recall@50.

method
KP20k

present kp: F1@5 absent kp: Recal@50

Transformer 22.1
catSeq 22.3
catSeqD 9.8
catSeqCorr 27.8

SGG 29.5 10.1

As it can be seen, SGG still performs better than Sota even
on large datasets.But the degree of optimization is mediocre,
just over a percentage point higher.

Conclusion
In this paper, a Select-Guide-Generate (SGG) approach
is reimplemented with a hierarchical neural model for
keyphrase generation, which separately deals with the gen-
eration of present and absent keyphrases and obtained re-
markable improvement on the task. Comprehensive empir-
ical studies demonstrate the effectiveness of SGG. Further-



more, an evaluation on a large scale dataset indicates the
extensibility of SGG model.
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