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Abstract

Attention mechanism is the core of transformer, which was
first applied to the field of natural language processing. Re-
cent research has shown that the attention mechanism can
also work well in the realm of computer vision. Subsequently,
more and more tasks in image analysis such as image en-
hancement and pose estimation was explored using attention
mechanism to empower, and is making impressive strides. In-
spired by these success, we apply attention mechanism to seg-
mentation task in 3D point cloud, and propose our SAPCS. In
particular, we use multi-layer perceptron to aggregate infor-
mation from neighbors of each point, thus applying semantic
attention for a certain point. Moreover, to reduce the points
we need to process for speeding up the model, we add sev-
eral down-sampling and pooling block. And to recover the
points that have been cut, we add several interpolation layers
before producing results. Experimental results show that, on
the challenging S3DIS dataset, our SAPCS get an mloU of
68.6%, achieving competitive performance with SOTA while
remaining fast running speed.

Introduction

Point cloud features have plenty of downstream applica-
tions, such as autonomous driving, AR, and robotics. With
the development of LiDAR technology for collecting point
clouds, point clouds have gained wide attention in recent
years because of their lower cost and higher accuracy. How-
ever, point cloud itself has irregularity, disorder and sparsity,
which makes feature learning and down stream task as seg-
mentation on point cloud much more difficult than that on
image.

There has been a lot of research on extracting better point
cloud features for downstream tasks. Among these tasks,
segmentation is one of the most challenging one. At present,
most of the methods dealing with segmentation using point
cloud features learning with voxel-based method or point-
based method(Li, Zhang, and Xia 2016; Qi et al. 2017a; Shi
etal. 2015; Su et al. 2015; Wei et al. 2016) . Attention mech-
anism was first proposed as the a core of transformer, which
was originally used for natural language processing, but re-
cent studies have shown that it is surprisingly effective in
vision feature extraction (Chen et al. 2020; Fan, Yang, and
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Kankanhalli 2021; Hou et al. 2020; Zhao et al. 2017; Zheng
et al. 2021). However, its use in point clouds is rarely ex-
plored.

With inherent irregularity, disorder and sparsity, we argue
that attention mechanism is particularly appropriate for point
cloud processing and its downstream task. Because attention
is in essence a set operator: attention itself is invariant to
permutation of the input elements. The application of atten-
tion to 3D point clouds is therefore quite natural, since point
clouds are essentially sets embedded in 3D space. With this
intuition, we further design a semantic attention layer for 3D
point cloud processing. Following the attention mechanism,
We investigate the form of the semantic attention operator,
the application of attention to local neighborhoods around
each point, and the encoding of positional information in the
network. The resulting networks are based purely on self-
attention and point-wise operations. Based on this network,
we can get better performance.

Although using attention in point cloud feature extrac-
tion can achieve good performance, because of the huge
amount of data per frame of point cloud, at the same time, it
will increase the computing overhead, which makes it diffi-
cult to complete tasks with high requirements on real time.
Therefore, in this work, we further improving the arithmetic
speed by introducing sampling and pooling to reduce points
needed to process, and using feature recovery module to re-
cover those reduced points.

Finally, our SAPCS consist of three main parts: feature
learning module, feature transfer module and feature recov-
ery module.(1) Feature learning module integrates more fea-
tures of other points in space to learn features of the current
point. It mainly contains four sub-modules: Firstly, the in-
put is sampled once and the features of other points in the
space are fused as much as possible. We use FPS(farthest
point sampling) to ensure the sampling effect while accel-
erating. Then, for each point, an MLP is used to fuse the
features of more nearest points. Finally, after MLP process-
ing, maximum pooling is adopted to retain the main features,
and then attention is used to learn the degree of influence of
each feature on the final feature results of this point to ob-
tain a better feature representation. (2) The feature transfer
module can better encode and transfer features through MLP
and attention mechanism. In this module, the main flow of
data is to transform features through MLP first, and then



use attention mechanism to give more reasonable weight to
feature relations.(3)Feature recovery module We use trilin-
ear interpolation method to recover features. After learning
with the multi-layer feature transfer module, feature learning
module and multi-layer feature recovery module, the point
cloud features integrated with the attention mechanism will
be obtained. Finally, the prediction head corresponding to
segmentation task is used for predicting the class and confi-
dence of each point.

We apply the model to a challenging mainstream data set,
S3DIS, and measure and compare the accuracy and time
cost. Experimental results show that our method is at least
1.5% more accurate than a series of voxel and point based
methods while remaining high running speed.In general, our
contribution is mainly as follows

* We propose SAPCS, which applies attention mechanism
to point cloud segmentation task. By carefully designing
corresponding modules, attention mechanism using se-
mantic information fits well with the inherent properties
of point cloud and turns the disadvantages of point cloud
to advantages.

* We designed the connection mode between each module
to enable end-to-end training and focus on the progress
improvement of segmentation on point cloud.

* Experiments verify that on segmentation task, our
SAPCS achieves significant improvement over a series
of voxel-based and point-based methods on the challenge
S3DIS benchmark.

Related Works

Traditional convolution can achieve more impressive results
on 2D image data. Compared to the fix data structure of 2D
image data, the disorder and irregularity of point cloud data
makes its processing more difficult.The processing of point
cloud data has become very important as it has important
applications in autonomous driving, autonomous robotics,
etc. Besides, attention mechanism also shows strong feature
extraction and sequence data processing capabilities in the
field of semantic segmentation of point cloud images. There-
fore, in this project, we will use this structure for semantic
segmentation of single frame point cloud and can prospect
better result.

Fixed-based Networks

Due to the success of traditional convolution, ways to apply
traditional convolution to point cloud data have long been
exploited. However, due to the irregularity and disorder of
point cloud data, we need to transform point cloud data to a
fixed data structure before we can learn its feature for further
segmentation task. There are usually two ways to do this,
one of which is to map the point cloud data, and the other,
more widely used, is to voxelise the point cloud data.

To take advantage of the well-performing 2D convolution,
many studies have represented point cloud data as 2D picture
data. And then use the traditional CNN to process the 2D
data (Su et al. 2015; Wei et al. 2016; Shi et al. 2015; Li,
Zhang, and Xia 2016). However, the transform from point

cloud data to 2D image data is computationally intensive and
the information in 3D space is lost.

Another widely used approach is 3D voxelization. Pro-
jecting point cloud data into a raster of Euclidean space, and
the regular 3D grid is suit for use the standard CNN opera-
tor (Maturana and Scherer 2015; Wu et al. 2015).Although
this method preserves spatial information, the resolution of
the raster is difficult to choose; too small a resolution loses a
great deal of information, and too large a resolution results
in an unsustainable computational and memory cost. Also
because of the sparse feature of the point cloud data, there
are large amounts of memory resources being wasted.

Point-based Networks

Due to the disadvantage of above approach, a lot meth-
ods directly process the point cloud data are proposed.
PointNet (Qi et al. 2017a) is a pioneer in the direct pro-
cessing of point cloud structures and uses symmetry func-
tions to achieve order invariance. To address the disadvan-
tage of PointNet (Qi et al. 2017a) which ignores local fea-
tures, PointNet++ (Qi et al. 2017b) uses PointNet (Qi et al.
2017a) as the basic structure to build a multi-level net-
work structure that can focus on both local and global fea-
tures. SpiderCNN (Xu et al. 2018) propose the parameter-
ized convolutional filters to process the point clouds, the fil-
ter weights are calculated from a family of polynomial func-
tions. KPConv (Thomas et al. 2019) introduce the flexible
and deformable convolution to deal with the unregular point
clouds.The filter weights are obtrained from the local coor-
dinate and can adapt to different point density distributions.

Attention and Transformer

In the current field of image semantic segmentation, convo-
lutional neural network model plays a dominant role, and
with the gradual deepening of neural network, this advan-
tage becomes more and more obvious. However, due to the
lack of memorization of CNN, the correlation of extracted
feature graphs is not ideal for image sequence data with time
series. Attention mechanism, which shows the processing
ability of sequence data in NLP field, has attracted the atten-
tion of this field. Ashish Vaswani first proposed Transformer
in 2017, which was applied in the field of NLP (Vaswani
et al. 2017). Transformer completely abandons the convo-
lution operation and innovatively uses self-attention struc-
ture to extract feature in statements, achieving the SOTA
effect of CNN model. the iGPT (Chen et al. 2020) model
applies Transformer in the visual field for the first time, and
can achieve the same accuracy as CNN model in classifi-
cation. SETR (Zheng et al. 2021) applies attention mecha-
nism in semantic segmentation task of image sequence data
for the first time, and proposes a new sequence to sequence
model, which MIoU and PA in ADE20K and Pascal Con-
text dataset surpasses the networks that only use CNN . And
the P4Transformer (Fan, Yang, and Kankanhalli 2021) also
has achieved good results in instance segmentation of point
cloud video sequence data.



Methods

We use end-to-end processing structure to divide the seman-
tic segmentation tasks of point clouds into multi-step tasks,
and composed into the same network. The end-to-end struc-
ture ensures that semantic segmentation function is the opti-
mal result in the whole tasks. In this chapter, after a detailed
review of the structure and calculation methods of trans-
former and attention mechanism, we use the semantic at-
tention structure to process the input point cloud image and
extract relevant features. Then, the final task is to complete
the semantic segmentation based on 2D point cloud image
in an end-to-end process.

Prior Knowledge

Transformer and self attention have been applied to the field
of computer vision, and the effect of large-scale image pro-
cessing has exceeded the traditional convolutional neural
network architecture. The self-attention mechanism uses po-
sition embedding to correlate the position relationship of the
segmented image, and uses the trigonometric function to re-
alize the relative position coding between each patch and
pixels, as shown in (1) (2),

pos; > n

v (pos;) = PE (pos;,2i) =sin | ———
10000 Zmoder

v (posj) = PE (pos;,2i + 1) = cos (posjm>
10000 4modet

where pos represents the abscissa and ordinate of 2D point
cloud pixels, i represents the relative position between im-
ages, and d,,,oq¢; represents the dimension of images.

After completing position embedding, Self-attention will
perform vector mapping. In the self-attention layer, the in-
put vector A={ a1, as , as. .. } is first transformed into three
different vectors: the query vector q, the key vector k and the
value vector v. V is the mapping vector passing through two
linear layers and a MLP, K and Q are the mapping completed
through two linear layers, as shown in (3) (4) (5), where ¢
and ¢ represent two linear layers.u represents two linear lay-
ers and MLP, both are mapping functions, a; and a; are the
horizontal and vertical coordinates of the pixel.

Q=c¢(ai) (3)
K =6 (ay) 4
V:M(ai>aj) (5)

The standard scalar dot-product attention layer can be ex-
pressed as(Vaswani et al. 2017):

Yi = ZT (E (ai)T5(aj) +P) -1 (ai, aj) (6)
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where y; is the output feature, 7 is the normalization function
such as the softmax function, € and J represent the mapping
function, prepresents the position encoding.

Through the extraction of feature maps, attention can be
focused on the areas that need to be segmented. At the
same time, the weight function o , such as MLP, is used
to distribute the weight between each patch to achieve a set

of global features and local features. When calculating the
point cloud vector, due to the particularity of vector atten-
tion, the original scalar attention is deformed by the residual,
as shown in (7):

yi= 7(ale(@),d(a)+p) O plaa;) (1)

acA

where « represents the relationship function between two
position codes, such as residual connection or subtraction,
connecting two position codes.

Semantic Attention

The location embedding feature of Transformer structure
and Self-attention mechanism is very conducive to seman-
tic segmentation in 2D point cloud images. We design the
semantic attention Layer based on this structure and posi-
tion encoding. The structure is based on the input 2D point
cloud vector, adding an additive relationship to the vector
mapping and position encoding, and put weight parameters
and position coding into the key vector K, T, as shown in

(8)(9):
yi= 0 -7(ale(@),d(a))+p) O (u(aiaj) +p)
acA
®)

p = v (pos;) ® o (pos;) )
The vector A al, a2, a3... is the coordinates of 8 adja-
cent points in the point cloud, and @ is the weight function
between each pixel. Therefore, the semantic attention layer
will be used to calculate the local features between points in
the 2D point cloud image, and the local features and global
features are fused through the weight parameter 6. The point
transformer layer is illustrated in Figure 1.

input: (x, p)

w: linear

output: (y, p)

Figure 1: Point transformer layer.

Network Architecture

We construct a residual point transformer block with the
point transformer layer as the core, as shown in Figure 3(a).
The transformer block is integrated with self-attention layer,
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Figure 2: Point transformer networks for semantic segmentation.
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Figure 3: Detailed structure design for each module.

linear projection which can reduce dimension and acceler-
ate processing and residual connection. The input is a set of
feature vectors x and the associated three-dimensional co-
ordinates P. The point transformer block facilitates the in-
formation exchange between these localized feature vectors
and generates new feature vectors for all the data points it
outputs. Based on the point transformer block, a 3D point
cloud understanding network is constructed. We do not use
convolution for preprocessing branches: the network is en-
tirely based on point transformer layers, pointwise transfor-
mations, and pooling. The network architectures are shown
in Figure 2.

Backbone Structure

The feature encoder of the point transformer network for se-
mantic segmentation has five stages, which act on progres-
sively down-sampled point sets. Since the down-sampling
rate of each stage is [1,4,4,4,4], the cardinality of the point
set generated in each stage is [N, N/4, N/16, N/64, N/256],
where N is the number of input points. Consecutive stages
are connected by transition modules: transition down for fea-
ture coding and transition up for feature decoding.

Transition Down

A key function of the transition down module is to reduce the
cardinality of the point set as needed. We perform farthest
point sampling in P, (Qi et al. 2017b) to identify a well-
distributed subset Pc C P, with the necessary cardinality.
Each input feature is linearly transformed, followed by batch
normalization and ReLU, followed by max pooling from &
neighbors in P, to each point in Pc. The transition down
module is shown in Figure 3(b).

Transition Up

For intensive prediction tasks such as semantic segmenta-
tion, U-net design is adopted, in which the encoder men-
tioned above is combined with a symmetric decoder (Qi
et al. 2017b; Choy, Gwak, and Savarese 2019). The consec-
utive stages in the decoder are connected by the transition up
modules. Their main function is to map the features of the
downsampled input point set P¢ to its superset Pe C Puo.
To this end, each input point feature is linear layer processed,
followed by batch normalization and ReLU processing, and
then the feature is mapped to the higher-resolution point
set P by trilinear interpolation. These interpolation fea-
tures from the previous decoder stage are summarized with
those from the corresponding encoder stage, which are pro-
vided by a skip connection. The upward transition module is
shown in Figure 3(c).

Experiments

In this section, we validate the model on the point cloud se-
mantic segmentation task. We compare the results with sev-
eral existing network structures

DataSet

Stanford Large-Scale 3D Indoor Spaces Dataset (Armeni
et al. 2016) is widely used in semantic scene segmentation
task. This dataset includes 3D scan point clouds for 6 indoor
areas including 272 rooms in total. This dataset includes 11
scenarios e.g. office, conference room, hallway, auditorium,
open space, lobby, lounge, pantry, copy room, storage and
WCl.In total, there are 13 semantic labels e.g. ceiling, floor,
wall, beam, column, window, door, chair, table, bookcase,
sofa, board and clutter. Each point is labelled as one of these
categories. Area 5 is withheld during training and is used for



Method OA  mACC mloU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
PointNet (Qi et al. 2017a) 49.0 41.1 88.8 973 69.8 0.1 39 46.3 108 59.0 526 59 40.3 26.4 332
SegCloud (Tchapmi et al. 2017) 574 48.9 90.1 96.1 699 0.0 18.4 38.4 23.1 704 759 409 584 13.0 41.6
PointWeb (Zhao et al. 2019) 87.0 66.6 60.3 92.0 985 794 00 21.1 59.7 348 763 883 469 693 649 525
PointCNN (Li et al. 2018) 859 639 57.3 92.3 982 794 0.0 17.6 22.8 62.1 744 80.6 31.7 66.7 62.1 56.7
KPConv (Thomas et al. 2019) 72.8 67.1 92.8 973 824 0.0 23.9 58.0 69.0 815 91.0 754 753 66.7 58.9
SAPCS 90.3 74.6 68.6 94.2 985 856 0.0 36.0 62.9 780 813 89.6 631 710 739  56.6
Table 1: Semantic segmentation results on the S3DIS dataset, evaluated on Area 5.

Method | OA° mACC mloU | ceiling floor wall beam column window door table chair sofa bookcase board clutter
SAPCS | 90.3 74.6 68.6 | 942 98.5 856 0.0 36.0 62.9 78.0 81.3 89.6 63.1 710 73.9  56.6
Channel | 52.1 30.0 20.2 | 659 0.0 55.8 0.1 2.2 0.4 13.8 286 167 53 454 14.8 13.8

Table 2: Ablation study between Point Transformer layer and Channel Attention layer

testing, the remaining five as the training set. To evaluate the
semantic segmentation of our model, we use the standard
6-fold cross-validation in our experiments. During training,
the input points are voxelised in order to reduce the density
of points and enhance the training efficiency, as well as for
the convenience of KNN operation.

Metric

For fair and diverse comparisons, our metrics for the results
use the mean loU(mloU), mean class Accuracy(mAcc) and
Overall Accuracy(OA) of the total 13 classes.

Implementation details

We implement the model in PyTorch (Paszke et al. 2019).
We use the SGD optimizer with momentum and weight de-
cay set to 0.9 and 0.0001, respectively. Voxel size is set to
0.04 and the maximum number voxels is set to 80000. We
train for 100 epochs with initial learning rate 0.5, dropped by
10x at the epochs 60 and 80. A distributed training scheme
is further implemented on four NVIDIA GEFORCE RTX
3090 GPUs to maintain the training batch size which is set
to 16.

Result

As shown in Table 1, compared to some work in recent
years sycg as PointNet (Qi et al. 2017a), SegCloud (Tchapmi
et al. 2017), PointWeb (Zhao et al. 2019), PointCNN (Li
et al. 2018) and KPConv (Thomas et al. 2019). SAPCS has
achieved the highest accuracy in OA, mACC and mloU.
In the mIoU comparison, SAPCS is 1.5% more accurate
than the previous highest accuracy KPConv and 1.8% more
than the previous best accuracy KPConv in mACC. SAPCS
achieves the highest accuracy in mloU in six of the thirteen
classes.

Ablation Study

We replace the point transformer layer implemented in MLP
with the Channel Attention Module in MPRM (Wei et al.
2020) for the ablation experiment. The result shown in Ta-
ble 2, the experimental results fully demonstrate the effec-
tiveness of the transformer module in our model.

Conlusion

Transformers have revolutionized natural language process-
ing and are making impressive gains in 2D image analy-
sis.Inspired by this progress, we have developed a trans-
former architecture for 3D point clouds on segmentation
tasks. Through analyzing, transformers are perhaps an even
more natural fit for point cloud processing than they are
for language or image processing, because point clouds are
essentially sets embedded in a metric space, and the self-
attention operator at the core of transformer networks is fun-
damentally a set operator. By combining the attention mech-
anism with the point cloud segmentation task, we achieved
an significant improvement over the existing methods while
remaining fast running speed. Empirical experiments on sev-
eral segmentation tasks in different datasets show the effec-
tiveness of our method. In the future, based on the existing
work, we will extract more excellent features through gaus-
sian mixture model and take a series of measures to reduce
the time complexity of the model from both efficiency and
accuracy. Apart from these,applying Transformer to other
tasks in the point cloud is also one of the areas that will be
studied. We sincerely hope that our work can provide some
reference and help for further investigation of the proper-
ties of point transformers, the development of new operators
and model architecture designs, and the practical application
of transformers to other tasks, such as 3D object detection,
shape classification and so on.
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