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Abstract

In recent years, Facial Expression Recognition (FER) has
achieved significant improvement on large-scale labeled data.
However, a number of FER methods usually suffer from huge
performance drop when dealing with limited labeled data,
which is not easy to access in realistic scenarios. In this pa-
per, we introduce a Semantic Learning for Facial Expression
Recognition method (SLFER) by using an off-the-shelf mod-
ule termed Spatial-Semantic Patch Learning (SSPL) of the
Facial Attribute Recognition method. SLFER is capable of
focusing on the semantic relationship between the different
parts of the human face and making full use of this informa-
tion to explore the intra-class and inter-class similarity of fa-
cial expression images. Specifically, the SLFER is composed
of three tasks, including an expression classification task, a
segmentation task and a classification task, which are jointly
trained in a multi-task learning framework. The expression
classification task extracts expression features, while the seg-
mentation task and the classification task utilize a facial pars-
ing model to obtain the semantic information of the facial
features at a pixel level and image level respectively. Experi-
mental results demonstrate that our method gain good perfor-
mance on in-the-wild FER database, including RAF-DB and
SEFW databases.

Introduction
FER plays an important role in our daily life helping human
beings convey emotions and ideas (Darwin 2015), which has
attracted extensive attention in the fields of human-computer
interaction, security, robot manufacturing, automation, med-
ical care, communication and driving (Zhang et al. 2018).
According to psychological studies (Ekman and Friesen
1971), the FER classifies an input facial image into the fol-
lowing seven categories: angry, disgust, fear, happy, sad, sur-
prise and neutral.

With the development of deep learning, FER has achieved
satisfactory performance in many aspects and many efforts
have been made to improve the accuracy of facial expres-
sion recognition. Some methods (Ruan et al. 2020; Mo et al.
2021) consider the disturbances of facial images, implicitly
and explicitly disentangle these disturbances from original
images respectively. Also, some methods (Ruan et al. 2020;
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Wang et al. 2020b) take fine-grained discriminative features
into consideration by using attention mechanism or decom-
posing and reconstructing facial feature to model subtle dif-
ferences between different facial expressions. While other
methods (Wang et al. 2020a; Zeng, Shan, and Chen 2018)
are designed to solve the noisy labels or inconsistent anno-
tations problems.

Though the methods mentioned gain competing results,
they only focus on information expression labels or other
attribution labels of databases offered and do not model
semantic-aware information, which may benefit the model.
Meanwhile, multi-task learning can complement informa-
tion among different related tasks and acquire a robust per-
formance for recognition. Based on this, we take semantic
information into consideration in order to explore the re-
lationship of the regions of facial components and facial
expressions at different levels. The method of SSPL (Shu
et al. 2021) uses three auxiliary tasks consisting of a Patch
Rotation Task(PRT), a Patch Segmentation Task(PST) and
a Patch Classification Task(PCT) to jointly learn spatial-
semantic relationship in order to deal with limited labeled
data. Inspired by this , we use a part of the auxiliary tasks,
including Segmentation Task and Classification Task as our
basic tasks to build multi-task learning framework, where
the semantic relationship of facial images is crucial to clas-
sify facial expressions. Since we need to extract the features
from the facial details to determine expression categories, it
is particularly important to learn fine-grained feature repre-
sentations. For examples, since we know that the regions of
eye, mouth contain rich information to distinguish different
expressions, it is useful to locate the mouth region and de-
termine whether the it is “Lip Corner Puller” at a semantic
level and guide the model pay attention to the location. We
use this proposed model to train on FER annotation datasets
and achieve improved performance in the real data predic-
tion.

To be specific , our proposed SLFER method uses the ex-
ternal auxiliary model called the facial parsing model (Yu
et al. 2018), to obtain the corresponding proxy semantic la-
bels, thereby supervising the network as it learns the se-
mantic fine-grained feature representations. Specifically, it
is a multi-task learning method where three tasks are jointly
trained in an end-to-end manner. The ST and CT classify
the parts of the human face from pixel level and image level



respectively, and then mine the semantic relationships be-
tween the regions of the face at different levels. The ex-
pression classification task outputs the final expression pre-
diction classification results. Also, we use SE block (Hu,
Shen, and Sun 2018) to build lightweight attention modules
into our network, which enables the model to achieve better
results on in-the-wild datasets. Our main contributions are
summarized as follows:

• We propose the multi-task learning framework SLFER
to explore the semantic relationship between the regions
of facial components and facial expression. This method
effectively uses semantic labels provided by the external
model as guidance to obtain different levels of seman-
tic information, and can accurately predict facial expres-
sions under the premise of limited labeled datasets.

• We utilize two auxiliary tasks with two auxiliary tasks,
where the goal of the two auxiliary tasks is to mine the
intrinsic relationship between the semantic facial parts
from different levels (pixel level and image level), al-
lowing the network to extract the semantic-aware fine-
grained feature representations more efficiently.

Related Work
Facial Expression Recognition

Deep learning-based methods are attracted more and more
attention in FER, which can solve lots of problems and
gain significant performances. (Xue, Wang, and Guo 2021)
leverage dropout-based transformer and local discrimina-
tive patches for FER, which reduce the redundancy of
patched and improve the FER performance. Besides, (?) ex-
plore powerful local patches and the interaction of layers
to make network pay more attention to multiple diverse re-
gions. (Wang et al. 2020a) propose the combination of self-
attention and relabel to suppress the uncertainties caused by
the subjectiveness of expression. (She et al. 2021) performs
FER based on auxiliary information to mine the latent distri-
bution in the label space and find the relationship of semantic
feature between pairwise. (Ruan et al. 2020; Mo et al. 2021)
both consider various disturbing factors and model common
ones (such as pose illumination) and potential ones (such
as hairstyle) respectively and disentangle these disturbances
from facial images to gain facial expression-aware features
and achieve excellent results. Besides, based on shard in-
formation across different expressions and unique informa-
tion with expression, (Ruan et al. 2021) design an effective
method model the information respectively and gain dis-
criminative feature representations for facial expression.

Although the methods above can deal with many prob-
lems and achieve leading performance, they only consider
classification task and do not other tasks to help model re-
alize facial expressions deeply . In this work, we propose
an effective method using pixel-level and image-level aux-
iliary tasks to perform improvement since the information
multi-tasks learning offers can guide model to focus on the
positions of facial components and further to learn rich in-
formation regions.

Multi-task Learning
Multi-task learning is inspired by human learning since
when learning a new tasks, people often apply the knowl-
edge they have learned on the related tasks. Therefore,
Multi-task learning can help model focus on its attention
on the features that actually matter because other tasks will
provide additional information to reduce the effect of noisy
data or disturbances. (Sun 2015) is proposed to use both face
identification and verification to develop effective feature
representations for reducing intra-personal variants while
enlarging inter-personal differences. (Zhang et al. 2016)
design a multi-task learning framework for learning fine-
grained feature representations by jointly optimizing both
classification and similarity constraints.

Since different types of related information can make
model more robust, we use sematic-aware tasks as our aux-
iliary tasks to guide the expression classification , making
model acquire enough knowledge to transfer and improve
the accuracy of recognition task.

Method
Overview
SLFER consists of four main components, including a back-
bone network with attention mechanism, an Expression
Classification Task (ECT), a Segmentation Task (ST) and
a Classification Task (CT). An overview of the SLFER
method is shown in Figure 1.

Figure 1: An overview of the SLFER method. SLFER in-
volves three tasks, an Expression Classification Task (ECT),
a Segmentation Task (ST) and a Classification Task (CT).
ECT extracts expression-related features and predicts an ex-
pression label. ST and CT encode the facial semantic infor-
mation from different levels by using a semantic label gen-
erated by an external model . The ST and CT parts are same
as PST and PCT from SSPL (Shu et al. 2021)

The facial images are first fed into a ResNet18 backbone
network to extract a basic CNN feature, where h, w, and c
denote the height, width, and number of channels, respec-
tively. The backbone network includes an attention mech-
anism SE block. Then, the basic feature is fed into three
branches, ECT, ST and CT. For ECT, the expression fea-
tures are used for expression prediction. Similar to SSPL, ST
performs semantic segmentation on the feature maps from



different layers of the pretrained ResNet18 backbone and
classifies the pixels of the output feature maps into semantic
classes, where the semantic labels are produced by an exter-
nal facial parsing model named BiSeNet (Yu et al. 2018) .
According to the number of pixels each semantic label takes
up, we can estimate whether a semantic class exists or not,
thus gaining the facial component labels, which are used to
predict the dominant facial component classes by CT. Fi-
nally, ECT, ST and CT are jointly trained in a multi-task
learning network. For the testing stage, ST and CT are re-
moved such that the facial expressions are only predicted by
the ResNet18 backbone and ECT.

Figure 2: The network architecture of the attention mecha-
nism (Hu, Shen, and Sun 2018)

Segmentation Task (ST)
In this part, we introduce segmentation task to predict se-
mantic labels of pixels. The original facial image is fed to
the backbone of ResNet-18 to extract features at different
levels.

ST performs semantic segmentation on the facial image
and assigns a semantic label to each pixel. Specifically, in
order to make full use of multi-level information, the output
feature map of the 4th residual block of ResNet-18 is fed
into the upper sampling layer, and then concatenated with
the output of 3rd residual block . In this way, the concate-
nated feature map contains multi-level information, and then
is sent into a convolution layer, batch normalization, ReLU
and an upper sampling layer. Finally, three pairs of upsam-
pling layers and convolution layers are used to classify each
pixel of the final feature map by batch normalization and
ReLU.

Given J semantic classes and the class prediction proba-
bilities for the k-th pixel as hs = [hk1, . . . , hkJ ], The loss of
ST is defined as:

LS =
1

K

K∑
k=1

(

J∑
j=1

(−qkj log(hkj))) (2)

where K is the total number of pixels in facial images

Classification Task(CT)
The architecture of CT uses two FC layers to predict the
number of facial component classes. Specifically, we first
send the a facial image to the pretrained ResNet-18 back-
bone to obtain a feature map Fs ∈ Rc,∗w,∗h,

, which c,,w,

and h, represent the channel, width, and height of the feature
map. Then input Fs into GAP layer to get a feature map fs.

Finally, the feature map fs is input into two fully connected
layers to predict the facial component label. Since not ev-
ery facial component make the same contribution for facial
expression recognition, we only choose the top n dominant
facial components in each input image and label them as 1,
while for the rest of other components we label them 0 as
yj . The loss of CT adopts the binary cross-entropy:

LC =

J∑
j=1

(yj log(xj) + (1− yj)log(1− xj)) (3)

where xj is the output prediction probability of the j-th facial
component.

Expression Classification Task(ECT)
For ECT, the expression-related features are obtained by em-
ploying a global average pooling (GAP) layer for the basic
CNN feature and then fed into three FC layers to predict the
expression categories. Given semantic classes, we denote the
prediction probability as and train ECT by minimizing the
cross-entropy loss, which can be formulated as:

LEC =

K∑
k=1

(−pklog(rk)) (4)

where pk=1 when k is equal to the ground-truth label and
pk=0 otherwise.

Joint Loss Function
The joint loss function for the SLFER is defined as:

LSLFER = LEC + λ1LS + λ2LC (5)

where λ1 and λ2 denote the regularization parameters. By
optimizing the joint loss function, SLFER is capable of fo-
cusing on the facial semantic information and extracting dis-
criminative expression-related features.

Experiments
In this section, we first describe two public datasets and both
of them are in-the-wild datasets. We then conduct ablation
studies to show the importance of the key components of our
methods with qualitative and quantitative results. Finally, we
compare our methods with state-of-the Art FER methods.

Datasets
RAF-DB The Real-world Affective Face Dataset(RAF-
DB) (Li and Deng 2018) is an in-the-wild database, which
contains 15339 images labeled with six basic facial expres-
sions and one neutral expression, which are divided into
12271 and 3068 images for training and testing.

SFEW The Static Facial Expression in the Wild(SFEW)
(Dhall et al. 2011) dataset is built by selecting the frames
from AFEW (Dhall et al. 2012) database, containing uncon-
strained facial expressions. We use SFEW2.0 (Dhall et al.
2015) to conduct our experiments which contains 958 im-
ages for training, 436 images for validation. Each image is
annotated with one of the seven expressions.



Table 1: Ablation studies for three key modules of our
SLFER method on the RAF-DB and SFEW databases.

Accuracy(%)
RAF-DB SFEW

Baseline 86.93 52.98
CT 87.77 55.73
ST 87.87 54.35

CT+ST 88.01 59.63
Proposed 88.33 59.86

Implementation Details
In our experiments, all the facial images are randomly
cropped to the size of 224*224. We also center crop the in-
put images to the size of 224*224 at test process. Similar
to (Wang et al. 2020b,a), our method is implemented with
ResNet18 (He et al. 2016) as backbone which is pretrained
on the MS-Celeb-1M face database (Guo et al. 2016). In the
training task, the number of key facial components set to 4 in
CT and we aggregate the semantic labels using externally-
trained facial parsing model (BiSeNet) from 19 categories
to 8 categories (background, skin, eye, ear, nose, mouth,
neck and hair). At the test process, we simply use ResNet18
(trained with two auxiliary tasks before) and three Fully-
Conneted (FC) layers for classification, which do not use
the auxiliary tasks.

All experiments are implemented by Pytorch and run on
1080Ti GPU for 40 epochs , and batch size for both datasets
is set to 16. Adam optimizer (Kingma and Ba 2014) with
initial learning rate of 0.0001 and β1 = 0.5, β2 = 0.999 is
applied to our method. The learning rate decays by 0.1 after
10,18,25 and 32 epochs.

Ablation studies
We conduct ablation studies to evaluate the influence of dif-
ferent auxiliary tasks (i.e., ST, and CT) and crucial parame-
ters (including balance parameters of ST loss λ1and CT loss
λ2, and the number of key facial components) of the pro-
posed method on the final performance.

Influence of different auxiliary tasks. We evaluate five
variants of the proposed method, including: (1) the baseline
method that is based on the ResNet18 pretrained on the MS-
Celeb-1M face database. (2) the method (denoted as “CT”)
that only adopts CT as the auxiliary task; (3) the method
(denoted as “ST”) that uses ST as the auxiliary task; (4) the
method (denoted as “ST+CT”) that uses ST and CT as the
auxiliary tasks; (5) the method (denoted as “Proposed”) that
uses ST and CT as the auxiliary tasks with attention mecha-
nism.

From Table 1, our proposed SLFE method gain higher ac-
curacy than baseline method on the RAF-DB and SFEW.
Compared with CT+ST, our method also improves the per-
formance. Our method achieved the best performance of all
variants when we use CT and ST as auxiliary tasks with at-
tention mechanism, which shows the importance of model-
ing the semantic relationship can be beneficial for the FER
task.

Table 2: Performance comparisons among different methods
on several FER databases. The best results are boldfaced.

Method Accuracy(%)
RAF-DB SFEW

DLP-CNN (Li and Deng 2018) 84.13 51.05
IPA2LT (Zeng et al. 2018) 86.77 58.29
RAN (Wang et al. 2020b) 86.90 56.40
SCN (Wang et al. 2020a) 87.03 -
DDL (Ruan et al. 2020) 87.71 59.86
D3Net (Mo et al. 2021) 88.79 62.16
FDRL (Ruan et al. 2021) 89.47 62.16

TransFER (Xue et al. 2021) 90.91 -
Baseline 86.93 52.98
Proposed 88.33 59.86

Influence of balance parameters of ST loss λ1and CT
lossλ2. We evaluate the recognition performance of the
proposed method with the different values of balance pa-
rameters of ST loss λ1 and CT loss λ2. To be specific, we
first fix λ2= 0.5 and set λ1 0, 0.001, 0.1, 0.5, 1, respectively.
Experimental results are given in Table 3 (a). We can know
for the table that our method achieves the best performance
when the value ofλ1 is set to 0.5. Similar to λ2, when test
λ2, we fix λ1= 0.5 and λ2 is set from 0 to 1. We can ob-
serve from the Table3(b) that when the value of λ2 is 0.5,
our method can gain better results. In the following, we set
the values of both λ1 and λ2 to 0.5 in our proposed method.

Influence of the number of dominant facial components
n. We evaluate the influence of the number of dominant fa-
cial components in CT on the final performance. The exper-
imental results are given in Figure 3 . Our proposed method
obtains the best results when the value of n is set to 4. When
the value of n is set too large, there are only a few pixels
can be chosen as dominant facial components. Also, when
n is too small, some important facial components are ig-
nored. Both cases may introduce error and lead to perfor-
mance degradation.

Figure 3: Ablation studies for the number of dominant facial
components on RAF-DB and SFEW databases.

Visualization
2D feature visualization. We use t-SNE to visualize the
expression features extracted by the baseline method and
the proposed FDRL method on the 2D space, respectively,
as shown in Figure 4. We can observe that baseline does not



(a) Baseline

λ1
Accuracy(%)

RAF-DB SFEW
0 87.54 57.56

0.001 87.90 57.79
0.1 88.07 58.52
0.5 88.33 59.86
1 88.13 57.79

(b) SLFER

λ2
Accuracy(%)

RAF-DB SFEW
0 87.74 55.96

0.001 87.84 56.42
0.1 87.77 57.79
0.5 88.33 59.86
1 87.64 56.19

Table 3: Ablation studies for different values of λ1and λ2 representing the balance parameters for ST loss and CT loss respec-
tively.

do a good job of making homogeneous expressions get close
to each other in order to gain a compact expression represen-
tation. In contrast, the features extracted from our proposed
method can effectively reduce intra-class differences and en-
hance inter-class separability for different expressions. Es-
pecially, compared with baseline, Happy and Sad can learn
more compact representations for SLFER.

(a) baseline (b) SLFER

Figure 4: Visualization of the expression features using t-
SNE Features are extracted from the RAF-DB database.

Figure 5: Semantic masks generated by externally-trained
facial parsing model on RAF-CB database.

Comparison with State-of-the-Art Methods
In this section, we compare the proposed method with seven
state-of-art methods on two public databases. Table 1 show
the experiment results on in-the-wild databases(RAF-DB,
SFEW).

In Table 2, among all the competing FER methods ,
IPA2LT and SCN is used to deal with the noisy and in-
consistent labels ,and DDL and D3Net both consider vari-
ous disturbing factors modeling common ones and potential

Table 4: Performance comparisons among different methods
on several FER databases. The best results are boldfaced.

Method Accuracy(%)
RAF-DB SFEW

DLP-CNN (Li and Deng 2018) 84.13 51.05
IPA2LT (Zeng et al. 2018) 86.77 58.29
RAN (Wang et al. 2020b) 86.90 56.40
SCN (Wang et al. 2020a) 87.03 -
DDL (Ruan et al. 2020) 87.71 59.86
D3Net (Mo et al. 2021) 88.79 62.16
FDRL (Ruan et al. 2021) 89.47 62.16

TransFER (Xue et al. 2021) 90.91 -
Baseline 86.93 52.98
Proposed 88.33 59.86

ones. DLP-CNN (Li and Deng 2018) is proposed to use a
LP-Loss to alleviate intra-class variations. Recently Trans-
FER improve the model performance by using an effective
combination of Vision Transformer(ViT) (Farzaneh and Qi
2021) and Dropout to learn rich relations-aware local rep-
resentations. As we can see , though the proposed method
dose not outperform some competing FER methods, such
as D3Net, FDRL and TransFER, our proposed method also
gains good performance. The methods above do not consider
that by using some auxiliary tasks can help model realize the
facial expression deeply. In contract, SLFER is developed to
focus on auxiliary tasks to gain better results by using the
semantic information.

Conclusion
In this paper, we have presented a SLFER method, mainly
consisting of three tasks (i.e, ECT, ST and CT) for effective
FER, especially ST and CT as our auxiliary tasks. Driven
by the attention mechanism that is employed in the back-
bone network, ECT is able to extract more discriminative
expression-related features. ST and CT encode the facial se-
mantic information from pixel level and image level respec-
tively, which enables the target ECT task to pay attention to
the critical facial parts related to the corresponding expres-
sions and thus makes the extracted features robust to vari-
ous disturbanc. Extensive experiments on the RAF-DB and
the SFEW databases have demonstrated the effectiveness of
SLFER.
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