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Abstract
The three-dimensional structure, physicochemical properties
and molecular functions of a protein are all determined by its
amino acid sequence. A protein with a length of 200 amino
acids has a possible sequence of 20200, causing an overflow
error in the computer. The current biological directed evolu-
tion technology can only involve a small part of the search
space, while the deep learning method can greatly increase
the design space, so as to design the required protein. In this
project, we hope to use the RNN-based model to synthesize
proteins with a given similar sequence, that is, to generate
new protein sequences through a series of protein sequences
with similar functions.

Introduction
Proteins are made from twenty-plus basic building blocks
called amino acids and mediates the fundamental processes
of life, having been the focus of much biomedical research
for the past 50 years (Huang, Boyken, and Baker 2016). De
novo protein design holds promise for creating small stable
proteins with shapes and have the potential to solve a vast
array of technical challenges in biomedicine and biological
engineering. Although we can generate new proteins from
scratch based on the principles of protein biophysics, there
are still two challenges: one is that the system energy cannot
be accurately calculated; the other is that the protein struc-
ture and sequence space is very large, which makes sampling
difficult. Therefore, it is necessary for us to introduce artifi-
cial intelligence methods for protein design to explore the
entire sequence space.

With the rapid development of deep learning, people have
successively applied deep learning to design small pro-
tein molecules. (Colton, De Mántaras, and Stock 2009; Liu
et al. 2016; White and Wilson 2010) The goal is to iden-
tify whether new examples (e.g., small protein molecules)
have realistic properties (e.g., biological activity). General
classifiers or classification models are classified for a given
unlabeled domain instance, and one of their drawbacks is
their inability to capture infinite or exponentially large com-
binatorial search space, which can be done by models gener-
ated from deep learning. Therefore, (Schneider and Schnei-
der 2016; Miyao and Funatsu 2017) this feature of those
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models generated from deep learning can have potential rel-
evance for the de novo design of small protein molecules
and reverse QSAR modeling. So there is currently a great
interest in how to automatically generate the required drug
molecules (e.g., small protein molecules) using deep learn-
ing methods.

LSTM (Long Short-Term Memory) is a long and short-
term memory network, which belongs to temporal recur-
rent neural network (RNNs). (Hochreiter and Schmidhuber
1997) proposed that the LSTM system could solve the prob-
lem of gradient disappearance and gradient explosion prob-
lems during long sequence training to some extent. Briefly,
the LSTM with memory cells, (Sutskever, Martens, and Hin-
ton 2011; Segler et al. 2018), performs better in longer se-
quences than the ordinary RNNs.

We hypothesize that the syntax of sequence amino acid
representation of proteins and peptides can be learned by the
cyclic LSTM network to enable the learned model to gener-
ate de novo sequence designs. There are two main applica-
tions of RNNs, one is used to model the representation sen-
tence and get a complete sentence representation; the other
is used to represent the current context of a sentence. In a
certain word, the hidden layer state of the RNNs can be ex-
pressed as a sentence context representation from the be-
ginning to the word (Qian and Sejnowski 1988). The RNNs
learn the most appropriate internal representation of a given
problem directly from the amino acid sequence, so they no
longer strictly require explicit feature selection in meaning-
ful molecular descriptors when we have a sufficiently di-
verse and representative training pool.

Currently, one of the systems successfully applied for
protein sequence analysis is recurrent LSTM systems, such
as recurrent neural networks with or without LSTM mem-
ory units (Heffernan et al. 2017; Baldi and Pollastri 2003;
Sønderby and Winther 2014). They can predict the pro-
tein secondary structure, and (Hochreiter, Heusel, and Ober-
mayer 2007) detect protein homology. These systems are
classifiers, which are not used for de novo sequence gen-
eration.

In practice problems, we often encounter the problem of
trying to design proteins with different structures but simi-
lar functions. The goal is to design the most stable proteins
with specific functions, or proteins with the least toxic side
effects among antibodies and antimicrobial peptides. This



project attempts to explore how to design similar proteins
based on protein sequences that have the same function, so
as to achieve amplification of the protein database.

Therefore, we mainly use LSTM RNNs to design amino
acid sequences, and chose antimicrobial peptides (AMPs) to
train the model. Once trained, we use this system to generate
new, potentially amphipathic AMPs and allow RNNs to cap-
ture the amphipathicity (Fjell et al. 2012). Amphipathicity is
a related property of the antimicrobial activity of AMPs. On
the other hand, we train the network by using small protein
sequences with specific three-dimensional structures. After
the model training, we use the model to produce new small
protein sequences with the same 3D structure.

Related Work
In recent years, sequence-based protein design is a research
hotspot. (Hawkins-Hooker et al. 2021) proposed a model
based on autoencoder and used VAE for sequence gener-
ation. (Repecka et al. 2021) proposed a sequence gener-
ation model based on GAN to generate apple dehydroge-
nase. (Wu et al. 2020) proposed the use of the Transformer
encoder-decoder model to generate signal peptides for in-
dustrial enzymes. (Angermueller et al. 2019) used reinforce-
ment learning (RL) to construct state transition functions
and reward mechanisms to generate protein sequences. (In-
graham et al. 2019) used a graph-based model based on
structure to devo design protein sequences. (Jing et al. 2020)
introduce geometric vector perceptrons, which extend stan-
dard dense layers to operate on collections of Euclidean vec-
tors into the graph-based model. (Cao et al. 2021) create a
novel transformer-based generative framework for designing
protein sequences conditioned on a specific target fold. (Qi
and Zhang 2020) developed a deep neural network named
DenseCPD that considers the three-dimensional density dis-
tribution of protein backbone atoms and predicts the proba-
bility of 20 natural amino acids for each residue in a protein.
Although these complex models can achieve excellent re-
sults on typical natural language sequence processing tasks,
the results are not optimistic in the field of protein design
where the data set is not rich enough. In view of this, we
narrowed the scope of the model to only target small pro-
teins. Design, and try to use a simple RNN neural network
to explore this problem.

Proposed Solution
Training Data
We studied many data sets, among them, in order to
train CPD, we used CATH4.2, and finally we selected our
database. We have collected a large number of peptide se-
quences, they are from three publicly accessible databases.
At the same time, we selected the complete DADP pep-
tide database. Most AMPs that do not contain Cys amino
acids (C) that may form disulfide bonds form linear helical
structures. In order to facilitate future synthesis, we removed
the Cys-containing sequence and incorporated the unnatural
amino acid sequence. Our final training data set (1554 pep-
tides) contains 7-48 amino acids, with an average length of
20.8 ± 7.7 (mean ± SD), median = 21 residues

Figure 1: Structure of net.

Model Structure and Training
We trained a two-layer unidirectional LSTM RNN with 256
memory units in each layer. The output of the second LSTM
is sent to the feed forward layer, which has 22 output neu-
rons and combines the output signal with the softmax func-
tion. We add a constant deviation to the LSTM forget gate,
and make the LSTM layer perform 20% and 40% dropout
regularization on the first and second layers, respectively, to
reduce the possibility of overfitting. We used the Adam opti-
mizer with a learning rate of 1%. Perform one-hot encoding
for each residue in the K amino acid symbol sequence, and
calculate the cross-entropy loss L of the classification be-
tween the output of the network and the actual expectation
as

L = −
K∑
i=1

yi log(yi) (1)

where yi represents the i-th one-hot residue vector calculated
in the training data. In order to obtain when the hyperparam-
eters, we cross-validated different models five times, each
time more than 200 epochs.

The number of one-layer and two-layer shield units of
LSTM is selected from [24, 32, 48, 64, 128, 256, 512], and
the regularization uses a ratio of 0.1 or 0.2 times the num-
ber of dropout layers to all layers. We identified each archi-
tecture for training where the smallest validation loss was
observed. The criterion for selecting the best overall perfor-
mance architecture is the verification loss of each network
in this state. In each cross-validation folding, the model
weights are reinitialized with different random seeds to re-
duce the residual knowledge from the previous folding.

Data Processing
In order to randomize and arbitrate the generated new se-
quence, we added the mark B to the N-terminus of all amino
acid sequences. In order to simplify data processing and
construct sequences of the same length, we also use trail-
ing space characters to fill the sequence to the length of the
longest sequence in the training set (48 residues). All se-
quences are represented by one-hot encoding based on bi-



nary encoding, and the length is the same as the vocabulary.
In the end, 1154 sequences, 48 padding lengths and 22 fea-
ture vector lengths constitute the final sequence data matrix.
The goal of network training (solving the loss function) is
the amino acid at the next residue position of each position
in the input.

Sequence Generation
We sampled 2000 cycles and used fifinal to train a new se-
quence of the network. Each loop is called from the char-
acter B and continues sampling, unless it reaches the filled
space character or the maximum sequence length (48). In
order to control the variability of the sequence during sam-
pling, we introduced a temperature-related factor in the soft-
max function. At the sequence position i, the temperature
occurrence probability of amino acid y is defined as

P (yi) = exp(yi/T )(

n∑
j=1

exp(yi/T )). (2)

Evaluation of Generated Sequences
We analyzed the sequence generated from scratch, according
to the following criteria:

1. Compare with the training data. We determined the per-
centage of the effective sequence without B; and the pep-
tide we created, and compared it with the training sequence.
Then we statistically compared the global peptide descriptor
value between the effective sequence and the training set,
and then analyzed the difference. In addition, we calculated
the Euclidean distance of the training set in the global pep-
tide descriptor space.

2. Predicted antibacterial activity. We used the CAMP
AMP prediction tool to evaluate the sequence we designed.
We compared the predicted pseudo-probability and the pre-
diction of the training set through the effective sequence of
AMP.

In the above two standards, the manually generated se-
quence may be an amphipathic helical sequence. Am-
phiphilicity is created by setting a basic residue every three
to four amino acids and filling the spaces with hydrophobic
amino acids.

Experiments
We train the LSTM model, and we use two data sets when
training the model. One is the open-source antimicrobial
peptide data set, and the other is the laboratory’s private
small protein data set: 1,000 small protein sequences with
HHH, EEHE, EHEE, and HEEH (where H stands for he-
lix and E stands for folding) structure. For the antimicrobial
peptide data set, we use the antimicrobial peptide data set
(AMPs) in the training model. After the model is trained, we
use the model to generate protein sequences to test whether
the generated protein sequences are amphipathic for antimi-
crobial peptides. For the small protein data set in the labo-
ratory, we used HHH, EEHE, EHEE, and HEEH to train the
model, respectively, to generate 1000 protein sequences.

We set the network as a two-layer network architecture,
each layer containing 256 neurons for production operation.

Figure 2: Loss evolution in training.

Figure 3: Percentages of valid unique sequences obtained
from sampling 1000 sequences at different temperatures.

Figure 2 summarizes training performance of the network,
measured in the form of classification cross-entropy loss.
The average verification loss obtained after 167 periods is
0.56 ± 0.06 (mean ± SD). We chose this number of epochs
to train the network on the complete data set. The evolution
of the training loss of the final network is shown in the fig-
ure. The final state of the model is saved and used to sample
the new sequence. During the design process of antimicro-
bial peptides, we tested the effect of different sampling tem-
peratures (softmax function, equation) on the effectiveness
of the constructed sequence (Table 1 and Figure 3). Setting
a high temperature will result in more different sequences,
and setting a low temperature will result in limited peptide
sequence diversity. At a temperature of 1.25, the sequence
validity begins to converge, and we decided to perform effi-
cient sampling at this temperature. The 2000 sequences con-
structed through the network model produced 1747 unique
peptides that were different from the training data (“valid”).
In the newly generated sequence, 88% are between 7 and 48
residues (19 ± 8 (mean ± SD)).

Corresponds to the extreme case of the training data dis-
tribution. In order to allow direct comparison of the designed
sequence with the training set, we randomly selected the
same number of newly generated sequences as in the train-
ing set (1554) for further study. Our analysis of the main
features of the generated sequence allows us to make a more



T 0.75 1 1.25 1.5
Valid(%) 51.6 79.1 90.6 91.4

Table 1: Percentages of valid unique sequences obtained
from sampling 1000 sequences at different temperatures

detailed comparison with the training data set. In order to
check whether the system does not just generate a sequence
with a specific amino acid distribution by default, we also
created a set of 1554 pseudorandom peptide sequences (7-
48 residues) with the same amino acid distribution as the
training set. we calculate the Euclidean distance from the
sampling sequence to the training set in the combined de-
scriptor space. The sampling sequence shows that the Eu-
clidean distance is 0.5 ± 0.3 (mean ± SD). For comparison,
the same distance calculation was performed on a random
data set (0.7 ± 0.3). The calculated distance shows that the
sequence generated by our model is significantly more simi-
lar to the training data compared with the comparison set (p-
value < 0.05, Welch t test). The model sampling sequence is
visually similar to the amino acid distribution of the training
set and the random set, and the proportion of hydrophobic
amino acids is slightly increased. When comparing the three
groups, this increase is also reflected in the global hydropho-
bicity distribution (Figure 4(a)). However, the spatial orien-
tation of hydrophobic and polar amino acids is different, re-
sulting in a significant increase in the hydrophobic moment
(p value < 0.001, two-sided Welch t test) compared with
the random group (Figure 4(b)). The average is 0.38 ± 0.13
(mean ± SD), and the hydrophobic moment of the sampling
sequence is also higher than that of the training set (0.36 ±
0.14). The histogram describing the distribution of the two
groups of hydrophobic moments is shown in Figure S3. To
quantify the antibacterial potential of the generated peptides,
we used the publicly accessible AMP prediction tool from
the CAMP44 server to predict their activity. We chose the
CAMP random forest classifier because it performed bet-
ter than other tools in a recent benchmark study. The pseudo
probability of the antibacterial (P(AMP)) peptide is obtained
from this random forest classifier model (Figure 4(c)). Of all
the generated sequences, 82% were predicted to be“active”
(P(AMP) ≥ 0.5), and 18% of the generated sequences were
predicted to be“inactive” (P(AMP) < 0.5). Welch’s t-test re-
jected the hypothesis that the random data set and the sam-
pled data set have the same activity prediction mean (p-value
< 0.01). According to AMP predictions, the new peptides
generated by our LSTM RNN model have a higher probabil-
ity of becoming active AMPs than random sequences with
amino acid frequencies in the training set.

Similarly, we trained on a private data set and efficiently
sampled at a temperature of 1.25. We use HHH, EEHE,
EHEE, and HEEH to train the model, respectively, to gener-
ate 1000 protein sequences. We hope that the generated pro-
tein sequences can have the same structure. These peptides
are different from the training data (“valid”). In the newly
generated sequence, the length of the sequence is between
7 and 48 residues. The result is showed in Table 2 and Fig-
ure 5.

Discussion
This method uses LTSM RNN for de novo sequence design.
This method is conceptually different from template based
peptide design strategy and random sequence generation
method, and amino acids are extracted from predefined dis-
tributions and then connected. Because LSTM RNN model
depends on its internal high-dimensional sequence represen-
tation, it should not only copy specific sequence templates,
but may construct “fuzzy” versions of sequences in train-
ing data. This concept is related to the “simulated molecu-
lar evolution” method based on random sequence evolution
process.

The results show that the internal representation of heli-
cal amps can be generated by using LSTM RNN model. Al-
though we call each generation process through the same
initial ’B’ token, the network model not only reproduces
the training sequence, but also reveals its own internal in-
terpretation of the data. This is reflected in the fact that no
generated sequence is the same training peptide. Although
some general peptide characteristics are different from the
distribution of training data, RNN sequence generation per-
forms better in approaching amp sequence space than ran-
dom or rule-based peptide design in global peptide descrip-
tion subspace. The overall charge of the generated sequence
is mainly positive charge, which confirms the early discov-
ery that amp obtains its bacterial membrane targeting ability
through the delicate balance of charge interaction and hy-
drophobicity.

The main difference between network generated sequence
and random sequence is their amphiphilicity, and the hy-
drophobic moment of network generated set is higher. It
proves this. The hydrophobic moment switches back to the
regular pattern of charged and hydrophobic residues at a spe-
cific position in the sequence, which must be learned by the
network. We assume that this also leads to better predic-
tion of camp model. To clarify this hypothesis, we manually
created a hypothetical amphiphilic helix sequence with al-
ternating positive ionizable and hydrophobic amino acids.
These sequences obtained higher scores than the training
data through camp prediction. This result confirms our hy-
pothesis that LSTM RNN actually learned to recognize am-
phiphilic grammar in peptides.

It has been shown that high hydrophobic moment alone
is not a sufficient standard for strong and selective antibac-
terial activity. It can be reasonably assumed that a certain
degree of conformational flexibility is required to obtain tar-
geted membrane degradation activity. Therefore, generating
a “fuzzy” version of the training sequence will prove to be
useful for peptide design and optimization. Importantly, the
sequence changes introduced by the network model are not
random, but follow the changes of learning training data.
Obviously, LSTM RNN is limited to the applicability cov-
ered by the training data. From the advantages of pure se-
quence orientation, extrapolation is difficult because peptide
sequences are discrete points in chemical space and there
is no smooth intermediate transition. This fact highlights
the advantages of continuous descriptor space, which allows
continuous transitions between molecules and supports ex-
trapolation to a limited extent. Therefore, combining LSTM



Figure 4: Comparison of the main peptide features between the training data (Training, orange), the generated sequences
(Generated, blue), the pseudo-random sequences with the same amino acid distribution as the training set (Random, purple).
The horizontal dashed lines represent the mean (violin plots) and median (box plots) values, and the whiskers extend to the most
extreme nonoutlier data points. (a) Eisenberg hydrophobicity, (b) Eisenberg hydrophobic moment, (c) Pseudo-probabilities of
sequences predicted to be AMPs.

HHH EEHE EHEE HEEH
Training sequences 1000 1000 1000 1000

Generated sequences 1000 1000 1000 1000
Valid sequences 927 946 962 897
Same structure 846 685 752 704

Valid sequences proportion 92.70% 94.60% 96.20% 89.70%
Same structure proportion 91.26% 72.41% 78.17% 78.48%

Table 2: Percentages of valid unique sequences and same structure sequences of each type.

Figure 5: Valid unique sequences and same structure se-
quences of each type.

RNN with the prediction model trained by molecular de-
scriptors can be used to design a customized activity focused
amino acid sequence library.

Conclusion
We combined RNN with LSTM to generate amino acid se-
quence data and design peptides from scratch. The experi-
mental results show that the network meets the requirement
of generating peptide library of specified size. This positive
result proves that LSTM and RNN can be widely used in a
variety of peptide design tasks. From the results of this study,
we conclude that the method may be best suited for use in
conjunction with predictive models to assess the quality of

the generated sequences. We have proved the effectiveness
of the model by generating antimicrobial peptides and gen-
erating proteins with the same structure as the training set.
This model has the advantages of simple training and strong
scalability. It improves the long-term dependence problem
in RNN; The performance of LSTM is usually better than
time recurrent neural network and hidden Markov model
(HMM); as a nonlinear model, LSTM can be used as a com-
plex nonlinear element to construct larger depth neural net-
work. But at the same time, because the model is simple, it
has the shortcomings of over-fitting and incomplete feature
extraction. Another disadvantage is that the gradient prob-
lem of RNN has been solved to a certain extent in LSTM and
its variants, but it is still not enough. It can handle sequences
of 100 orders of magnitude, but it will still be difficult for
sequences of 1000 orders of magnitude or longer; Another
disadvantage is that each LSTM cell means that there are
four full connection layers (MLPs). If the LSTM has a large
time span and the network is deep, the amount of calculation
will be large and time-consuming. There is still a long way
to go before putting the model into actual production.
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