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Abstract

With the development of the game industry, the game Al is in-
vented and becomes more and more important for game iter-
ation. In the view of game companies, game Al bots can help
them find the weakness and verify the fairness of the game
design. In the view of players, game Al bots can play and
compete with human players, increasing their willingness. In
our work, we propose TAI model for implementing the Tank
Trouble game Al bot based on Deep Q-Network (DQN) and
its variants. To obtain a higher win rate, we make a corre-
sponding improvement to the training network and design a
proper reward function based on our game to make the train-
ing process more efficient and lead to a better training result.
Our model has a preliminary effective win rate increase after
training on the Tank Trouble game.

Introduction

Many game companies are dedicated to designing superior
and complicated Artificial Intelligence (AI) for their game.
Adding with game Al elements appropriately, players not
only experience more pleasure but also enhance their op-
erability of the game. Not just traditional chess game Als
which are famous as ‘AlphaGo’, mull real-time multiplay-
ers’ battle games are designing their own Al-based on a
much more complicated deep learning framework.

Unfortunately, the design for game Al is considered one
of the most crucial business secrets for these game compa-
nies. It is hard for us to learn from these excellent and stun-
ning designs. If we consider learning and designing relative
game artificial intelligence, we need to find a suitable game.
This game needs to meet several conditions in our consider-
ation:

* The game supports multi-user battles and requires appro-
priate strategies.

* The game has fewer control parameters for simplifying
model size.

* We can obtain backend data quickly.
Generally, Deep reinforcement learning (DRL) can be
classified into two main classes: value function-based meth-

ods and policy-based methods. DQN is the most typi-
cal model of the value function-based method. DQN is
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very suitable for most strategy real-time multiplayer bat-
tle games. Thus, we are supposed to design a game Al for
‘TankTrouble’ based DQN and improve this model to a large
extent.

In TAI model, we chose an open-source project named
‘TankTrouble’.Two players control these two tanks respec-
tively Players need to aim at their enemy and avoid bullets as
much as possible. Reinforcement learning (RL) successfully
works in many games Al designs. We improve our model
based on DQN and apple it in ‘TankTrouble’. We modify
Q-Network based Deep Double Q-Network (DDQN) algo-
rithm and speed up the training process of DQN based Du-
eling DQN algorithm and other tricks.

However, the mechanics of this game are relatively com-
plicated, such as the bounce of bullets in complex terrain.
How to let the DRL model learn complex game mechanics
is a problem. In addition, the DQN model needs to design
different rewards according to different game rules. The net-
work structure also needs to change accordingly.

The contributions of TAI are as follows:

* We designed and implemented the first DRL game Al for
‘TankTrouble’.

* We improved the original DQN model and compared the
effects of various tricks on the model.

* We learn how to design rewards and adjust game strategy
through experiments.

Related Work

Deep reinforcement learning (DRL) has been successfully
applied to training auto game players (Mnih et al. 2013;
Wu 2019). Deep Q-Network(DQN) outperformed humans
on about 2600 Atari games in 2013(Mnih et al. 2013). In
addition, in 2019, Juewu developed by Tencent that has two
layers applying attention mechanism achieved a 48% win-
ner rate(Wu 2019). What’s more, (Torrado et al. 2018) re-
alizes an interface GVGAI to the OpenAl Gym environ-
ment, a widely used way of connecting agents to reinforce-
ment learning problems. To the best of our knowledge,
from the algorithm perspective, DRL can be classified into
two main classes: value function-based methods and policy-
based methods.

In DQN, deep networks and reinforcement learning were
successfully combined by using a convolutional neural net
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Figure 1: The Proposed Architecture of TAI Network

to approximate the action values for a given state .S;(which
is fed as input to the network in the form of a stack of raw
pixel frames). At each step, based on the current state, the
agent selects an action e-greedily with respect to the action
values, and adds a transition (S;,As, Ret1,Ye41,5t41) to a
replay memory buffer, that holds the last million transitions.
The parameters of the neural network are optimized by us-
ing stochastic gradient descent to minimize the loss. (Yoon
and Kim 2017) proposed a DQN approach to train a fighting
game Al, and (Takano et al. 2018) proposed a method for
implementing a fighting game Al using Hybrid Reward Ar-
chitecture(HRA). Besides, (Takano et al. 2019) train a gen-
eral fighting game Al from self-play games and overcome
the drawback while maintaining the DQN AI’s strong points.
The above methods have achieved good results in fight game
Al, like Tank Trouble.

Mnih et al. (Mnih et al. 2013) combined the convolu-
tional neural network with the traditional RL. The combi-
nation of the Q learning algorithm produces the Deep Q-
Network (DQN) model. This model is used to process the
vision-based work in the control task. It is pioneering work
in the DRL field.

Van Hasselt et al (Hasselt, Guez, and Silver 2015) based
on double Q-learning (Narayanan and Jurafsky 2007), pro-
posed Deep Double Q-Network (DDQN) algorithm. There
are two sets of parameters in double-Q learning: 67 and 6.
Among them, 6 is used to select the corresponding maxi-
mum Q value. The action, 8~ is used to evaluate the Q value
of the best action. Action selection and strategy evaluation
are separated, which reduces the overestimation Q value
risks. Therefore, DDQN uses the current value network pa-
rameter 6 to select the optimal action, and uses the parameter
0~ of the target value network to evaluate the optimal action.
Dueling DQN is a variant network of DQN that is easy to im-
plement. Dueling DQN improves network structure based on
DQN. With this different kind of network structure, Dueling
DQN can be trained faster than the original DQN.

DQN recycles attention and sets a neural network (NN) to
calculate value function to improve learning stability. How-

ever, it has limits in processing input with arbitrary length
and is poor in handling continuous high-dimension datasets.
One policy-based method called DPG accepts continuous
high-dimension problems (Mnih et al. 2013). DPG learns
policy during the process instead of optimizing a value func-
tion. But low converge speed makes DPG impractical. A
combined method named the Actor-Critic algorithm main-
tains two NNs. One is an Actor that trains to learn policies,
the other is Critic aiming to judge the policies. Some repre-
sentatives of Actor-Critic are DDPG, A2C and A3C (Lilli-
crap et al. 2019; Mnih et al. 2016). Those methods are able
to carry on in a parallel fashion.

Proposed Solution

Environment Setup

Game Recreation Based on (Mohammadjavadpirhadi,
Tmoj1428 2018), we recreate the game. In the open-source
game, the operations of movement and rotation are deter-
mined by the duration of the player’s key pressing, and the
direction is unified into the interface. And it generates two
tanks whose locations are from a fixed specific array at the
beginning of the game or when the game is reset. The key
idea here is that 1) split the operations of movement and
rotation into four actions, in order to execute the subse-
quent simulation actions by limiting the scale. (At one ac-
tion, movement is limited by a fixed distance, and rotation is
limited by a fixed angle.) 2) generate two tanks randomly on
the map, while not colliding with each other and the wall. 3)
remake the mechanism of collision detection and reflection
against the wall to make the game more accurate, otherwise,
subsequent bugs will cause errors in the model. 4) redefine
the size of maps, tanks, and bullets, as well as the speed of
tanks and bullets, so as to facilitate the training of deep rein-
forcement learning models.

OpenAi gym Environment Gym is a simulation platform
for research and development of reinforcement learning-
related algorithms. We converted our imitation tank trouble



game into an OpenAi environment for reinforcement learn-
ing training. Following is three basic interfaces:

1. space. There is always action_space in gym env. In our
env, action_space represents the types of actions that can
be taken. There are six types of actions in our environ-
ment, namely, (0: fire, 1: forward, 2: backward, 3: left, 4:
right, 5: NON_ACTION).

2. step. Step refers to the action in the simulation game,
and return four values accordingly: observation, reward,
done, info.

(a) Observation represent the current state of the object,
such as position information, angle information, etc.
In our work, the current state means the current frame.

(b) Reward: amount of reward achieved by the previous
action. In out work, a variety of different rewards are
set, which will be introduced in subsequent chapters.

(c) Done: whether it’s time to reset the environment. In
our work, when any tank is destroyed by a bullet, done
is true, otherwise done is false.

(d) Info: diagnostic information useful for debugging. In
our work, info is used to print bullet information.

3. render. Render is a rendering engine, and the game can
run without a render. But render is used to visually dis-
play the state of objects in the current environment, and
also to facilitate our code debugging. In our work, render
returns the current state.

Improved methods based DQN

We use DQN and two improved models based on DQN to
train our tank bot. The basic DQN is composed of a reply
memory and two networks. The basic idea of DQN is to
collect the game experience from the environment and use
these experiences to train a neural network that can compute
a Q-value function. The network can be trained by gradient
descent.

The Q-value function Q(s,a) is used for evaluating the
agent’s action. The goal of the agent is to interact with
the environment by selecting actions in a way that maxi-
mizes future rewards R. So the Q-value action is defined
as Q(s,a) = max,E{R|sy = t,a; = a, 7}, where 7 is
a policy mapping sequences to actions (or distributions over
actions) and t means the future reward getting at time t.

The basic steps of model construction is depict as follows:

1. We utilize a replay memory to remember the experience
provided by the agent observed from the environment.
Each step a tuple e; = (s¢,as, 74, a; + 1) is stored in a
dataset D = eq,..., e,

2. After collecting experience,the agent will select and ex-
ecute a new action. With probability of e, the action will
be chosen according to the neural network, in other case,
it will be chosen at random.

3. Every time new action was selected, we update the policy
network using the last 16 transition sampled from the re-
play memory. For every 10 episode, we update the target
network. The target network is used for fixing parame-
ters.

DQN Different from vanilla DQN(Hasselt, Guez, and Sil-
ver 2015), the DQN model we used in our tank game did
not sample memory randomly but used the last 16 images
as input to train our model. The time-series relationship is
quite different with previous games(Wu 2019; Lillicrap et al.
2019). Due to the reason that the bullet will bounce, there
exist various chances of the next movement even the bullets
locates at the same position. Random choice may disrupt the
model’s experience. Based on the above assumption, we de-
termined to sample the last 16 frames to feed our model.

During our practice, we found that delayed rewards made
it difficult for the model to learn how to win the game, so we
tried to increase the variety of rewards to guide the model
to learn how to play the game. One of our proposed rewards
is to give rewards based on the inter-direction between two
models. Give the model a one-point bonus if our model faces
the enemy head-on, and a -1 point penalty if it turns its back
on the enemy. Other angles give a linearly varying bonus
depending on the angle as equation (1).

reward; = —%0 +1 (1)

, where 6 is the angle between two tanks. It is also possible
to use a alternative reward equation reward = cos(6).

However, this reward only works in an empty environ-
ment. When there is a wall blocking the enemy, we need
to add a special negative bonus to block it, as equation (2)
shows.

rewards = reward; + 0.5 x N, 2)
, where the reward is from (1), N, stands from the pixel
numbers of the wall that blocks shooting the enemy. V), can
be calculated by the Bresenham’s line algorithm(Bresenham
1977), which is illustrated by Figure 2.
In summary, the final reward works as follows,

100 Candy tank dead
reward = ¢ —100 Green tank dead (3)
cos(0) + 0.5 x N, Others

Figure 2: The illustration of N,

DDQN The first improved model is called DDQN. The
computation of Q value is improved in this model. If the
estimate of the Q function is inaccurate, it causes an over-
estimation every time max is taken, so two Q networks are
used to solve this problem, one network chooses the optimal
action, the other estimates it.



Dueling DQN The second improved model is called
Dueling-DQN. Generally, we estimate Q value in the Q table
directly while we need to estimate S value and A value dur-
ing implementing Dueling-DQN. S value can be regarded as
the average Q value in a certain state. A value can be calcu-
lated by Q value and S value with the limitation of average
value. The sum of the S value and the A value is the Q value
in the Q table of DQN which leads to the average of the A
value being zero. leads to the average of A value is zero.

In the Q network of DQN, it can be understood that a
curve is used to fit the Q value of the Q table. Now we take a
cross-section to indicate the Q value of each action when we
take a certain state. However, when we need to update the
Q value of an action, we will directly update the Q network
to increase the Q value of this action. With the limitation
of average on A value in Dueling-DQN, we will update the
S value firstly when we update the network. Because the S
value is the average Q value, the adjustment of the average
means updating Q values with one S value at one time. As
the result of this adjustment strategy, it not only updates the
Q value of a certain action but also adjusts the Q values of
all actions for this state when the network is updated. In this
way, we can update more values fewer times.

TAI The implementation of TAI can be divided into three
parts. The first part is the same as ordinary DQN to process
and learn data. The second part is calculating the S value to
train the network estimating the average. The third part is
calculating the A value like the S value. Then we normalize
the A value which increases the limitation of the average
of the A value is zero. The processing of normalization is
calculating the average of the A value and then subtracting
the average value from the A value.

The implementation of TAI only needs to modify the net-
work architecture of the Q network. In the meantime, TAI
can implement other DQN techniques, such as experience
playback, fixed network, double network structures comput-
ing targets, etc.

Model Implementation

Preprocessing Procedure The original TankTrouble
game is not suitable for training a good DQN model. The
original frame size is 1920x1080 pixels, which can be
computationally demanding. Moreover, the complex map
is too hard for our agent to learn. So we need to use some
preprocessing strategies. First, we resize the input frames
to 400x600 to reduce the input dimensionality. Then we
design a set of maps differing from difficulty value. The
different maps create a friendly environment for the tank
agent to learn gradually.

TAI Network Architecture The deep learning network in
TAI includes five convolutional layers.The architecture is
showed as Figure 1. Each convolutional layer is followed by
a Batch Normalization layer and an active layer using the
LeakyReLU activation function. In the first convolutional
layer, the number of input channels in the input image is 3
and the number of output channels is 16. In the second con-
volutional layer, the number of input channels is 16 and the
number of output channels is 32. In the third convolutional

layer, the number of input channels is 32 and the number of
output channels is 32. In the fourth convolutional layer, the
number of input channels is 32 and the number of output
channels is 64. In the fifth convolutional layer, the number
of input channels is 64 and the number of output channels is
64. All the filter in the convolutional layer has a filter size of
3 x 3 with a stride of 2. After the fifth convolutional layer,
there are two linear layers training S value and A value re-
spectively. The output dimension is equal to the number of
actions in the Tanktrouble Game DQN agent.

Experiments

In this section, we evaluate our model with three experi-
ments to verify the performance of the TankTrouble Al and
show the experimental results.

Hyperparameters Value
BATCH_SIZE 16
GAMMA 0.9
EPS_START 0.9
EPS_END 0.05
EPS_DECAY 200
TARGET_UPDATE 10

MEMORY _CAPACITY 300

Table 1: LIST OF HYPERPARAMETERS

Hyperparameters

We set the hyperparameters according to our empirical re-
sults. Their detail are given in Table 1. BATCH_SIZE stands
for the number of frames that we feed into DQN models.
GAMMA makes rewards from the uncertain far future less
important for our agent than the ones in the near future that
it can be fairly confident about. The probability of choos-
ing a random action will start at EPS_START and will decay
exponentially towards EPS_END. EPS_DECAY controls the
rate of decay.

Training Model

We separately train models on a Tesla V100 machine for 48
hours. The metric we use to evaluate the model is the reward
sum at the end of each epoch. In our experiment, there is
a reward for each action performed in each epoch, and it is
uncertain how much action would take to finish each round.

The reward sum for each epoch is recorded and analyzed.
The experimental results are shown in Figure 3. The mod-
els have been all running 3500 epochs at local (TAI model
trains 3000 epochs). And our TAI model rewards is shown
by Figure 4. We will discuss the results in the Comparisons.

Results and Analysis

With training rounds increasing, DQN and DDQN show a
satisfying trend in the early stage and then show a downward
trend. This is most likely due to overfitting in the model. In
the DQN model, the model’s rewards peak at around 2500
epochs, and then the rewards began to fluctuate downward.
In the DDQN model, the model’s rewards peak at around
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Figure 3: Rewards of DQN and its variants

2000 epochs. It shows that DDQN takes roughly the same
epochs with DQN model to achieve satisfying results. How-
ever, because of the improvement of optimizer function in
DQN, we can clearly observe that the rewards of the model
are greatly improved compared to the DQN model. In the
TAI model, we improve the network structure of DQN and
DDQN. We observe that the model can achieve good train-
ing results. In the early stage of training, the quality of the
model is poor, and it is difficult for the Action selected from
the target-net to have a positive reward. With the training
of the model and the guidance of the reward function, the
model is easier to obtain higher rewards than before.

By observing the details of the results of TAI model in
Figure 4, we observe that the model fluctuated randomly be-
fore 1400 rounds, and the average value of the worst rewards
in the model reached -60. After 1400 rounds, although the
rewards of the model was still wobbling, the reward genera-
tion of the model keeps increasing on the whole and reaches
-10 after 3000 rounds. The training effect of TAI model is
better than that of the first two models. Since there are too
few training rounds, we will keep training the model in fu-
ture Work.

Discussion

In this section, we will present our views on our experi-
ments. Specifically, we will present what the current model
can learn, what can not learn, and why the training result is
not efficient enough. Finally, we will introduce our future
work.

TAI Model
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Figure 4: Reward of TAI Model

Knowledge

What can learn Based on the experiments, we find that
the Al can identify the enemy’s position, and adjust its po-
sition and direction for more precise aiming. What’s more,
the bullet’s position can be learned so that the tank can dodge
the bullets. In addition, instead of random firing, the Al can
tune self-direction to the enemy automatically. As a result,
our Al achieves a high win rate.

What can not learn However, we also found that Al can
not master the reflex mechanism and uses it to kill enemies.
What’s more, the Al can not record the map information,
namely, the wall position and direction, which would make
killing enemies a lot easier.

Why can not learn The reasons for the poor model train-
ing effect are as follows:

1. The number of convolutional layers is less, and the model
network is not deep enough to obtain enough high-level
features from the input image.

2. The batchsize of each training is not large enough to ob-
tain experience from a large number of images. Continu-
ous input of multiple frames of images may lead to over-
fitting of the model.

3. Too few training rounds, GPU resource constraints, un-
able to read a large number of images into GPU, resulting
in too slow training speed.

Future work

In future, we will add maps of more complex terrain and
train the two tanks at the same time to achieve real-time bat-
tle. Besides, we will implement other types of DRL models
for more comparison.

Conclusion

In this paper, the main work we do is to train an Al bot TAI
for “Tank Trouble’. We design our Al bot based on the DQN
model and its improved algorithm. By fixing the network
architecture and making changes to the Q-value function, we
propose a new model which can perform more effectively on
the specific game. Evaluating the models by experiments, we
find our model has a preliminary effective win rate increase
after training. In the future, We will try to apply this model
on the more real-time battle games as Tank-trouble.
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