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Abstract

Generative Adversarial Networks (GANs) have shown
promising results in generating realistic images, however the
state-of-the-art GANs usually require a lager amount of train-
ing data and expensive computational cost which limited their
application in real-life scenarios. FastGAN is a cutting-edge
GAN designed specifically for training from scratch using
small datasets with low computation budget. In this work,
we tried several optimization methods designed for GAN to
further improve the performance of FastGAN. Specially, in
order to avoid overfitting of the network, we apply addtional
two forms of data augmentation methods offset and cutout to
ensure data diversity. Besides, we modify the generator of the
network to improve the performance by introducing an modi-
fied attention mechanism. Finally, we make further modifica-
tion via the use of relativistic versions of hinge loss function
in the discriminator. Experiment results on three datasets cov-
ering different image domains show that there is a slight per-
formance gain when applying relativistic loss on FastGAN,
while the other two techniques do not play a positive role.

Introduction

Generative Adversarial Networks(GANs)(Goodfellow et al.
2014) have become a rapidly heating-up research topic in re-
cent years. GANs consist of two models: a generator which
tries to capture the distribution of true examples for new data
example generation and a discriminator distinguishing gen-
erated examples from the real ones as accurately as possible.
Both of these networks play a min-max game where one is
trying to outsmart the other. The adversarial idea success-
fully allows GANs to generate more realistic and vivid im-
ages, which is much superior to traditional methods.

The quality and realism of synthetic images has seen
tremendous improvement in recent years thanks to the
breakthroughs in GANs. Now state-of-the-art GANS, e.g.,
StyleGAN2(Karras et al. 2020) or BigGAN(Brock, Don-
ahue, and Simonyan 2019), can synthesis fake images that
can’t be easily recognized by human or even by machines.
However a massive amount of training data and computation
resources are required for these excellent GANs to be well
trained. For instance, training with StyleGAN?2 on the Flickr
Faces High Quality (FFHQ) dataset to generate 1024x1024
realistic images of faces requires 3 days and 22 hours with 8§
tesla-v100 GPUs. With one card, it would be 27days and 23
hours.

In real-life scenarios, there are not enough mount of data
available for training in many cases, such as an artist’s mas-
terpieces, a particular person’s images. Aside from this, due
to hardware conditions of our team and time constraints, we
are interesting in training GAN's with small datasets and lim-
ited computation resources while ensuring high quality.

A newly proposed lightweight GAN structure called Fast-
GAN(Liu et al. 2021) is designed specifically for training
from scratch using small datasets. The skip-layer channel-
wise excitation mechanism (SLE) in generator and a self-
supervised regularization on the discriminator significantly
boost the synthesis performance of FastGAN. Notably, the
model converges from scratch within 24 hours of training
on a single RTX-2080 GPU.

In the paper of FastGAN, we found that the evaluation
index Frechet Inception Distance(FID)(Heusel et al. 2017)
of different datasets in the experiment part remain relatively
high and there is some space for reduction, which is what we
want to work on. Aiming at the improvement of FastGAN’s
image generation quality, we do modifications on three dif-
ferent aspects: input, generator structure, discriminator loss.
Contributions are summarized as follow:

1. We extend data augmentation methods into four types
from color, translation to color, translation, cutout, offset to
increase data diversity.

2. we add residual attention layers in generator, and re-
place the attention mechanism in the layer with an variant
called Efficient Attention.

3. We replace default hinge loss of discriminator with a
relativistic version which estimates the probability that the
given real data is more realistic than randomly sampled fake
data.

Related Work
High-Quality Image Generation

BigGAN(Brock, Donahue, and Simonyan 2019) applies or-
thogonal regularization to the generator and uses a simple
truncation trick to eventually produce high quality images.
However, the parameters required for training are huge and
the hardware requirements are correspondingly high. In or-
der to alleviate the problem that the increased model param-
eters lead to more rigid gradient flow, the multi-scale gradi-
ent GAN structure(Karnewar and Wang 2020) is proposed.



Inevitably, many methods to improve the quality of the gen-
erated image add further computational costs.

Training Stability Improvement

The problems of vanishing gradient and mode collapse have
severely restricted GANSs, development, so many works
have been proposed to stabilize its training. Wasserstein
GAN(Arjovsky, Chintala, and Bottou 2017) replaces the
Jensen-Shannon divergence in ordinary GAN with Wasser-
stein distance, which makes the training more stable and
theoretically solves the problem of mode collapse and van-
ishing gradient. However, the need to carefully balance the
training degree of G and D is a challenge that exists in
WGAN. WGAN-GP (Gulrajani et al. 2017) is further pro-
posed to solve this problem, but it requires a greater time
cost to make the training converge. Based on few-shot learn-
ing, DiffAugment(Zhao et al. 2020) imposes various types
of differentiable augmentations on both real and fake sam-
ples, effectively stabilizes training, and leads to better con-
vergence.

Reduction In computational costs

Expensive computational costs and a large amount of train-
ing data limit the use of many improved models in practi-
cal applications. Faced with such problem, few-shot learning
can be a good way to reduce the computational costs if it can
generate high quality images as well. DiffAugment(Zhao
et al. 2020) can generate high-fidelity images using only 100
images without pre-training. A newly proposed light-weight
GAN structure called FastGAN (Liu et al. 2021) gains supe-
rior quality on 1024 x 1024 resolution, even with less than
100 training samples.

Method
Data Augmentation

Data augmentation is essential for GAN to work effectively
in a low data setting. In addition to the augmentation in the
original FastGAN, we adopt more diverse data augmentation
methods to implicitly increase the size of the datasets, thus
enhancing the robustness and generalization of FastGAN.

To be specific, the augmentation types is set to color and
translation by default, where color means randomly chang-
ing brightness, saturation and contrast of the input images,
translation is randomly moving images on the canvas with
black background. We extend this line of work by adding
two types of augmentations called offset and cutout(DeVries
and Taylor 2017). The offset operation randomly moves im-
age by x and y-axis with repeating image, while the cutout
augmentation works by creating random black boxes on the
image. Figure 1 illustrate all four types of augmentations vi-
sually.

Attention In Generator

Attention mechanism, originally proposed in the field of nat-
ural language processing, has now been shown to be ef-
fective in computer vision tasks.A recent paper(Yu et al.
2021) investigated various attention mechanism in image
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Figure 1: Illustration of four types of data augmentations

generation models, and showed that the network perfor-
mance benefits from the engagement of attention. We do
architectural modification by introducing a residual version
of self-attention layers (Yu et al. 2021) to get a better re-
sult.Furthermore, we replace the attention module in resid-
ual attention layer with an variant with linear complexity
called Efficient Attention (Shen et al. 2021) to avoid exces-
sive extra computational consumption.

In details, let X € R"*%*¢ be the input tensor to a con-
volutional layer in the original architecture. The feature map
X pass through 1x1 convolutional kernel to get query ten-
sor Q(X) € R"*wxe And we obtain key and values ten-
sors K (X),V(X) € Rwxe¢ separately using 3x3 depth-
wise convolution with a padding of 1. For computing vision
data, the module then flattens all three tensors by combin-
ing h axis and w axis to form Q(z), K (), V(z) € R"*d,
Instead of interpreting the keys as n features vectors in
Ry, , the module regards them as dj, single-channel feature
maps. Efficient attention uses each of these feature maps as
a weighting over all position and aggregates the value fea-
tures through weighted summation to form a global context
vector.The name reflects the fact that the vector does not cor-
respond to a specific position, but is a global description of
the input features, as Figure 2 shows.

The following equation characterizes the efficient atten-
tion mechanism :

attn(Q(X), K(X), V(X)) = pg(Q(X))pr(K(X))TV(X) (1)

where p,, pi, are normalization function for query and key
features,respectively. The implementation of two normaliza-
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Figure 2: Illustration of the architecture of efficient atten-
tion. Each box represents an input, output, or intermediate
matrix. Above it is the name of the corresponding matrix,
and inside are the variable name and the size of the matrix.
Pq, Pk are the normalizers on @, K respectively. n, d, dy, d,
are the input size and the dimensionalities of the inputs,the
keys, and the values,respectively. () denotes matrix multi-
plication.

tion methods are

Scaling: pg(Y) = pp(Y) =

Softmax: p4(Y) = 0pow(Y), )

pr(Y) = oca(Y)

where 0,.4,,0 01 denote applying the softmax function along
each row or column of matrix Y ,respectively.

When using scaling normalization, efficient attention is
mathematically equivalent to conventional dot-product at-
tention,while the softmax variant of efficient attention is a
close approximation of that variant of dot-product atten-
tion.For formal proof, refer to (DeVries and Taylor 2017).

We choose the softmax version to get the self attention
result, and reshape it to h xw X c. Finally, it adds the resultant
features to the input features to form a residual structure.

Oself = attn(Q(fE),K(iU),V(l’)) (3)
Oself = 5self +X

Relativistic Discriminator Loss

The original GAN loss function can cause the GAN to get
stuck in the early stages of GAN training when the discrim-
inator’s job is very easy. Several different variations of loss
have been proposed to improve training stability. For com-
putational efficiency, FastGAN employs the hinge version of
the adversarial loss.

Lp = —Eynr,,,, [min(0, =1 + D(x))] — Ezg(z)[min(0, =1 — D(&))] + Lrecons 4)

Lg = —E..n[D(G(z)] &)

Inspired by (Jolicoeur-Martineau 2018), we do a slight
change of the original hinge loss by using a “relativistic dis-
criminator” which estimate the probability that the given real
data is more realistic than a randomly sampled fake data.The
relativistic discriminator loss functions can be formulated by
redefined D(x) and D(Z) in equation (4):

D(z) = D(x) — Ezngz) D(2) (6)

D(2) = D(2) = Eont,e0iD(a) (D

The intuition of this approach is that when generator is
trained good enough to fool the discriminator, fake samples
may appear to be more realistic than real samples, both real
and fake samples are being classified as real by the discrimi-
nator.In that case, GAN completely ignores the prior knowl-
edge that half of the mini-batch samples are fake. The dis-
criminator should assign a higher probability of being fake
to real samples rather than classify all samples are real.

Experiment
Datasets

For convenience, we conduct experiments on three datasets
with multiple content categories provided by the author of
FastGAN. On 256x256 resolution,we test on Animal-Face
Dog. On 512x512 resolution, we test on anime face and art
painting . These datasets are designed to cover images with
different characteristics: photo realistic, graphic-illustration,
and art-like images. Datasets used in the paper can be found
at https://drive.google.com/drive/folders/InCpr84nKkrs9-
aVMET5h8gqFbUYJRPLR. The details of the datasets we
experiment on are presented in Table 1.Sample images of
the datasets are given by Figure 3.

AnimalFace-Dog  Anime Face  Art paintings
256x256 512x512 512x512
Image Number 389 100 1000

Resolution

Table 1: Information about the training sets

Metrics

We use Fréchet Inception Distance (FID)(Heusel et al. 2017)
to measure the models’ synthesis performance,which is the
golden standard measuring the overall semantic realism of
the synthesized images.

We let G generate 5000 images and compute FID between
the synthesized images and the whole training set. We save
the checkpoints every 10k iterations during training and re-
port the best FID from the checkpoints.



AnimalFace-Dog Anime Face Art paintings
Baseline 53.80 59.19 46.19
Baseline+Data Augmentation 65.63 59.51 51.41
Baseline + Attention 101.88 / 69.53
Baseline + Relativistic discriminator loss 50.54 58.87 45.31

Table 2: FID comparison on few-sample datasets (50k iters). ’/”” stands for non-convergence

Figure 3: Sample images of the three training sets

Performance Comparison

FastGAN has been shown to achieve superior performance
on the few-shot datasets compared to state-of-the-art(SOTA)
large volume model StyleGAN2. For the purpose of further
improving the model’s performance,we made small modifi-
cation to each of the three parts of the model: augment of
input data, attention in generator, relativistic discriminator.
Experiments are conducted with a single nvidia Titan-XP
GPU card. Due to the limitations of the hardware, we only
add new attention layers after the 4x4, 8x8, and 16x16 res-
olution convolution layers of the generator. Experiment re-
sults are shown in Table 2.

From Table 2, we observe that applying data augmenta-
tion does not improve the model performance,which is not
in line with our perception, while using a relativistic dis-
criminator generally improve data generation quality.

We also can draw the conclusion that our modified resid-
ual attention layer brings unstable performance of FastGAN.
The experiment results either become worse or even do not
converge.We infer that it could be one or more of the fol-
lowing 4 reasons. First, code implementation is incorrect,
which is inconsistent with the paper’s approach. Second, the
residual attention structure (Yu et al. 2021) can only works
well with the corresponding proposed attention mechanism,
not efficient attention. Besides, the residual attention struc-
ture is adopted not only in the generator, but also in the dis-
criminator in (Yu et al. 2021). Only when both are used, can
the performance improve. Finally, we just followed the Fast-

Figure 4: 256x256 generated images of AnimalFace-dog.
Each row represents a model-generated image.1: Baseline,
2: Baseline+Data Augmentation, 3: Baseline + Attention, 4:
Baseline + Relativistic discriminator loss.

GAN authors’ original settings for the experiments while did
not make any hyperparameter adjustments in order to saving
time.

Qualitative results are presented in Figure 4-6. The quality
of the images generated by the baseline + attention model is
significantly worse than that of the other models, while the
other models make little difference visually, as the difference
in FID metrics is not very large.

Conclusion

In this paper, we apply three techniques to baseline model
FastGAN to further improve image generation quality. On
three datasets with a diverse content variation, we show that
hat there is a slight performance gain when applying rel-
ativistic loss on FastGAN, while the other two techniques
do not play a positive. We hope our work can provide new
study perspectives on few-shot image synthesis for future
research.



Figure 5: 512x512 generated images of Art Paintings. Each row represents a model-generated image. 1: Baseline, 2: Base-
line+Data Augmentation, 3: Baseline + Attention, 4: Baseline + Relativistic discriminator loss.

=~

Figure 6: 512x512 generated images of Anime Face. Each row represents a model-generated image. 1: Baseline, 2: Base-
line+Data Augmentation, 3: Baseline + Attention, 4: Baseline + Relativistic discriminator loss.
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