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Abstract

Frequency hopping-based antijamming techniques are not al-
ways applicable in vehicular ad hoc networks (VANETS)
due to the high mobility of onboard units (OBUs) and the
largescale network topology. In this paper, we use unmanned
aerial vehicles (UAVs) to relay the message of an OBU and
improve the communication performance of VANETS against
smart jammers that observe the ongoing OBU and UAV com-
munication status and even induce the UAV to use a specific
relay strategy and then attack it accordingly. On the basis of
the latest technology hotbooting policy hill climbing-based
UAV relay strategy, we use Deep Q-learning Network(DQN)
to improve the convergence speed, and help the VANET re-
sist jamming in the dynamic game without being aware of the
VANET model and the jamming model. Our expected result
is that the relay strategy improved by DQN is effective,and
compared with the scheme based on Q learning, it reduces
the bit error rate of OBU message, and makes the conver-
gence speed faster when the performance is guaranteed, thus
improving the utility of VANET.

1 Introduction

Vehicular ad-hoc networks (VANETS) support vehicle-to-
vehicle communications and vehicle-to-infrastructure com-
munications to improve the transmission security, help build
unmanned-driving, and support booming applications of on-
board units (OBUs)(Hartenstein and Laberteaux 2008). The
high mobility of OBUs and the large-scale dynamic network
with fixed roadside units (RSUs) make the VANET vulner-
able to jamming(Azogu et al. 2013). A jammer sends faked
or replayed signals and aims to block the ongoing transmis-
sions between OBUs and the serving RSUs. By applying
smart radio devices to observe the ongoing VANET commu-
nication and evaluate the underlying policy, a smart jammer
not only has flexible control over the jamming frequencies
and signal strengths but also induces the VANET to use a
specific communication strategy and then attacks it accord-
ingly.

The anti-jamming communication of VANETs can be
significantly improved by using unmanned aerial vehicles
(UAVs) to relay the OBU message. Being faster to deploy,
UAVs generally have better channel states due to the line-
of-sight (LOS) links and smaller path-loss exponents (Sed-
jelmaci, Senouci, and Ansari 2016; Zhou et al. 2015) when

they communicate with OBUs and RSUs, compared with
the serving RSUs at a fixed location on the ground that
might be severely blocked by a smart jammer. Therefore,
UAVs help relay the OBU message to improve the signal-
to-interference-plus-noise-ratio (SINR) of the OBU signals,
and thus reduce the bit-error-rate (BER) of the OBU mes-
sage, especially if the serving RSUs are blocked by jammers
and/or interference.

As a type of Deep Reinforcement Learning, the Deep Re-
inforcement Network(DQN) is realized to solve the prob-
lem that Q-learning and PHC-based relay strategy both need
huge space to store the Q-table. More specifically, the DQN-
based relay strategy can directly update strategy (i.e. the
weights of netowrk) against smart jammer without know-
ing the jamming model. The contributions of this work can
be summarized as follows:

* 1) We propose a DQN-based UAV relay strategy to re-
sist smart jamming without the knowledge of the UAV
channel model and the jamming model.

* 2) We simulate the system model in great detail, and re-
produce Q-learning and PHC-based relay strategy. Sim-
ulation results show that this scheme achieves a lower
BER of the OBU message and a higher utility compared
with three benchmarks.

The rest of this paper is organized as follows. We review
the related work in Section II and present the system model
of the UAV-aided VANET in Section III. We introduce the
DQN-based UAV relay strategy and compare it with other
three benchmarks in Section I'V. Experiment details and sim-
ulation results are provided in Section V and conclusion is
drawn for this work in Section V.

2 Related Work

UAVs have been used to relay mobile messages for ground
terminals. The optimization of multi-antenna UAVs andmo-
bile ground terminals in (Zhan, Yu, and Swindlehurst 2011)
improves the uplink sum rate in a wireless relay network.The
UAV-aided intrusion detection scheme presented in (Sedjel-
maci, Senouci, and Ansari 2016) uses UAVs to relay the
alarm messages regarding lethal attacks of vehicles to im-
prove the detection accuracy and reduce the energy con-
sumption in vehicular networks.



The UAV placement strategy as developed in (Tuna et al.
2012) enhances the coverage of public safety communica-
tions. The UAV-aided sensor deployment in (Johansen et al.
2014) improves the localization and navigation to monitor
post-disaster areas. The fifield tests in(Ueyama et al. 2014)
show the impact of the UAV altitude on the communica-
tion quality in autonomous vehicles. The UAV-aided wire-
less sensor network as investigated in (Dong et al. 2014) can
reduce the packet loss and power consumption of the net-
work against node failures. The UAV-assisted data gather-
ing system as developed in (Lu, Wang, and Wang 2013) re-
duces the required execution time and the energy consump-
tion in wireless sensor networks. Those studies have shown
that UAVs can improve the communication performance .

But it is a problem how to enhance jamming resistance
the hideaway strategy as proposed in (Azogu et al. 2013)
determines when to keep silent based on the packet trans-
mission ratio to improve jamming resistance. The jamming
detection scheme as proposed in (Benslimane and Nguyen-
Minh 2016a) can improve the message invalidation ratio
in time-critical networks. The MAC-based jamming detec-
tion scheme as presented in (Benslimane and Nguyen-Minh
2016b) reduces the false alarm rate and the time required to
monitor vehicular networks.

Reinforcement learning techniques have been widely ap-
plied to improve security in wireless networks(Xiao et al.
2015; Bowling and Veloso 2001; Long et al. 2007). The non-
cooperative power control algorithm as presented in (Long
et al. 2007) in the repeated game can improve the through-
put of wireless ad hoc networks. The prospect theory based
dynamic game as formulated in (Han, Xiao, and Poor 2017)
shows the impact of the subjectivity of endusers and jam-
mers on the throughput of cognitive radio networks with Q-
learning algorithm. The deep Q-network algorithm as pro-
posed in (Bowling and Veloso 2001) uses both frequency
and spatial diverting to improve the SINR of the signals and
the utility of the secondary user in cognitive radio networks.

3 UAV-AIDED VANETS
A. Network Model

In this work, we consider an OBU that moves along the road
at a speed denoted by v(¥) € [0, V]at time slot k, where
V is the maximum speed and time is partitioned into slots
of a constant duration. The OBU aims to send a message
to a server via several RSUs and a UAV in a time slot, as
illustrated in Figure 1. The RSUs at fixed locations are con-
nected via fibers with each other and the server. Equipped
with sensors such as cameras and a global positioning sys-
tem receiver, the OBU gathers the sensing information and
sends a message to the server via the serving RSU denoted
by RSU;. We assume that both the UAV and RSUI re-
ceive the message from the OBU and then the UAV decides
whether to connect to the server via RSU, afterwards in the
time slot. For simplicity, the constant channel power gains
are assumed to be constant in each time slot.

Let d¥) = [dg’“%d;’“),dg’“),dfl’“%dgk) denote the typol-

ogy vector of the network at time slot k, where dgk) de-
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Figure 1: Illustration of a UAV-aided VANET, in which the
OBU moving with speed v(k) sends a message at time slot k
to a server via the serving RSU (RSU1) and the UAV that is
connected with RSU2 and is less affected by the jammer.

notes the distar]1¢ce denotes the distance between the OBU
and RSU;, d(z’) is the distance between the OBU and

the UAV, dgk) corresponds to the distance of the jammer-
RSUllink,dgf) is the distance between the jammer and the
UAYV, and dgk) is the distance between the UAV and RSU,.

The distance dgk) and dgk) depend on the speed of the OBU
at time slot k. The OBU sends a message to a server via
RSU; and the UAV that is connected with RSU, at time
slot k with a fixed transmit power P(**). The SINR of the
signals received by ~(y=1 for RSU; or y=2 for the UAV)
sent from the OBU and the SINR of the signals received by
RSUs sent from the UAV at time slot k are denoted bypﬁk)
and pgk) ;srespectively. The BER of a signal denoted by p.(p)
depends on SINR per bit,p of the received signal for a given
modulation mode. The BER of the OBU message at time

slot k denoted by Pe(k) depends on the OBU-RSU; link,the
OBU-UAV link and the UAV-RSUs link, and is given by
p®) _ o (p ( p(m) ) (mm ( ) p<k>>>)

e e 1 y e 2 M3

The BER of the message depends on the minimum of the
BER of the OBU-RSU; signal as shown in the first term,
and the BER of the weaker signal of the OBU-UAV link and
the UAV-R.SUs link at that time as represented in the second
term. According to the channel quality and the BER of the
OBU message, the UAV decides whether or not to relay the
OBU message to RSUs,, which is denoted by z € A =
{0,1}, where A is the feasible action set of the UAV. The
UAV relays the OBU message at time slot k with a fixed

transmit power P((jk) and a transmat energy cost C((Jk) if x =
1, and keeps silent otherwise. The system server can gather
the sensing message sent from the OBU via RSU; or the
UAV.

The smart jammer applies smart radio devices to eaves-
drop the control channel of the VANET and estimated
the VANET transmission policy.According to the estimated
VANET communication, the smart jammer changes its jam-



ming power y € [0, P}'] where P} is the maximum jam-
ming power. For simplicity, we assume a constant noise
power in the received signal denoted by ¢ and the jammer is
too far away from the UAV and RSUs to block them.

B. Channel Model

The channel power gain vector of the system denoted
byh®) = hgk),hgk),hgk), hflk),hék) at time slot k con-
sists of the channel power gain of the OBU-RSU; link
h") | the OBU-UAV hY", the jammer-RSU; link h$”,
the jammer-UAV link h{", and the UAV-RSU, link A"
Similar to [19], the channel gain is modeled as hz(»k) =

(k) ~
HOAEM (ddio) where 6 is the channel power gain at the

reference distance dg, the channel time VariationAi(k) de-
pends on the Doppler shift due to the node mobility. The
path-loss exponent «; is set according to (Erceg et al. 1999)
and (Palat, Annamalau, and Reed 2005), e.g.,a;;=2 for the
OBU-UAY, jammer-UAV and UAV-RSU; links and «; = 4
otherwise. The path loss of the jammer-UAYV radio link is as-
sumed to be much higher than that of the jammer- RSU; link
due to a longer distance. Similarly, the radio link between
the OBU and the UAV has a higher path loss compared with
that of the OBU-RSU link.

Due to the uncorrelated locations of RSU; and the UAV,

h(lk) is independent with hgk). The UAV transmission fails
if the UAV is too far away from the OBU, and the UAV can
cover the whole geographic area if it is high enough. For
simplicity, the channel power gain is quantized into N lev-

els with h{*) € {Ho}icpen % = 1,2, and is modeled as
a Markov chain with N states. As shown in Figure 2, the
transition probability of the channel gain hi from H,, to H,

during time slot k denoted by Pl(];)ln depends on the OBU
speed given by p(k) =Pr (hgk) =H, | hz(-k_l) = Hm>

i,m,n

4 Proposed Solution

The repeated interactions between the UAV and the smart
jammer in the VANET can be formulated as a dynamic
game, in which the jammer determines its jamming power
based on the previous VANET transmission, and the UAV
chooses its relay strategy based on the system state, which
consists of the radio channel state and the BER of the OBU
message observed in last time slot. Therefore, the UAV re-
lay process in the dynamic game can be viewed as an MDP
and the UAV can apply reinforcement learning techniques
such as PHC to derive its optimal strategy via trials with-
out the knowledge of jamming model. In the dynamic game,
the UAV decides whether or not to relay the OBU message
based on the system state at time slot k denoted by s(k) that
consists of the link quality between the UAV and the OBU,
that between RSU; and the OBU, the SINR between RSU>
and the UAV, and the BER of the OBU message at the pre-
vious time slot, 1.e.,

k=1) (k=1) (k-1 k—1
s(’“):[pﬁ S

The Q-function of the action x at state s is denoted by
Q(s, x) and is updated in each time slot according to iterative
Bellman equation as follows:

Q(S7$) « (1 - O‘)Q(S7$)
+a(uy(s,x) + 6V (s'))

where s° is the next state if the UAV chooses x at state s,
and the value function V(s) maximizes Q(s,x) over the UAV
action set given by

V(s) « maxge(0,1;Q(s, )

In addition, the mixed-strategy table in the PHC-based re-
lay denoted by (s, x) is updated by increasing the probability
corresponding to the highest valued action by 5 € (0, 1], and
decreasing other probabilities by—3/(]A| — 1), i.e.,

(s, x) < (s, x)

. {ﬁ, & = maxze 1) Q( 5, 2)
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The UAV then selects whether or not to relay the OBU
message © € A according to the mixed strategy(s, x), i.e.,
Pr(z=2") =7 (s,2*),2* € A

However, both Q-learning and PHC Based relay are non-
deep learning algorithm which need huge space to store
the Q-table. Further, it would be difficult to converge if the
action-space and the state-space become large. In our system
model, the action-space has only 0 and 1 to denote whether
or not to relay the message from OBU. But the state space is
a four-dimensional continuous tensor, and in the first three
algorithms we can only approximate state values by discrete
values, but DQN can extract features from continuous states.
Therefore, in theory, the efficiency and convergence speed
of Q and PHC are better than that of non-depth. Deep Q
Network (DQN) uses deep neural network to estimate the
action-value function. Q (s, a;0) = Q%(s,a)

Now,the estimated and real Q-value becomes an estimated
value: Q (s, at; 0) and a real value:

Rii1 4+ ymaxg Q (St41,a;0).
And, we use gradient decent to update the Q value,

VoL; = E[Riy1 +ymax, Q (Si41,0;0) — Qr (5¢, 04 6)]

In this way,the DQN based relay strategy gives the ac-
tion choice and learns the jamming strategy in the anti-
jamming transmission dynamic game against smart jammer
and achieves the optimal relay strategy to improve the long-
term anti-jamming transmission performance.

5 Experiments

Simulations have been performed to evaluate the perfor-
mance of the proposed UAV relay strategy in the dynamic
game against smart jamming. In the simulations, the jam-
mer was stationary and observed the ongoing VANET com-
munication. The jammer applied greedy strategy to choose
the jamming power regarding the expected reward uj in (5)
during the VANET communication in each time slot. The
radio link between the jammer and RSU2 was much worse
than that between the jammer and RSUI due to a longer



distance, which leads to a lower channel gain. In this simu-
lation experiment, we set P =10, Py = 2,Cy = 1,C; =
0.5,= 0.1, hg = 0.4, hy = 0.2, h5 = 0.5,h; in the range of
[0.2,0.6] and h, in the range of [0.6,0.8]. More specifically,
the transmit power of the UAV was (X) times higher than
that of the OBU, with a unit relay energy cost. The jammer
had a lower channel gain to the UAV than RSUI1 due to a
longer distance. Similar to the channel model in [33], the
Doppler shift was considered in the OBU-RSU1 and OBU-
UAV channel models. The channel gain transition probabil-
ity linearly increases with the moving speed of the OBU, and
is given by:

v if (m,n) = (1,2) or (N, N — 1)
R 11%§2 if1<m=n<N
" ev if2<m<N-landn=m=1
0, otherwise
9]

Where ¢ denotes the impact of the environmental
changes.We set the Vmax = 5,and the ¢ = 0.9. Through read-
ing the literature, we reproduce three algorithms of this task
in the literature:

1. Q-learning-based relay; 2. the PHC-based relay; 3. The
hotbooting PHC-based relay;

In addition to the above three existing algorithms, we also
introduce a new DQN algorithm.In non-deep Q and PHC,
we index the Q table with discrete state values, but in DQN,
we directly take state sinr as the network input. Relu is used
as the activation function of the hidden layer. Use Adam as
the optimizer. Eval-network is updated in each time-slot and
target-network is updated every 50 epochs to synchronize its
weights with eval-network.Limited by the two-dimensional
action space, the decision of the whole intermediate problem
is relatively simple. Theoretically, there will be no problems
such as fitting, because it is not considered in the initial im-
plementation, and the subsequent simulation results prove
that it does not occur.The results of the four algorithms are
shown in the Figure 2,Figure 3 and Figure 4 :

Algorithm 1: DQN Based UAV relay strategy.

1: Initialize «, s (0), A, Target-net, Eval-net

2: for k=1,2,3, ..., K do

Choose x®) € A

4:  ifx® =1 then

5 Relay the OBU message to RSU2 with a fixed
transmit power Py ()

6: endif

7:  Collect SINR pl,fZ,p3 and BER Pe from server

8:  Obtain utility ugy %)

9: skt =[p, ) 5, (K) oK) p ()]

0:  Feed [s(kf, x®) uy ) sk D] 0

Replay Buffer

11:  Update Eval-net

12:  if step mod 2 =0 then

b

13: Update Target-net with Eval-net
14:  end if
15: end for=0

BER

u,‘ k
W

\
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Figure 2: Y-coordinate: BER, X-coordinate: epoch.

As shown in the Figure 3,the BER of the OBU message
of the DQN-based decreases with time, e.g., from 4% at
the beginning of the game to 1.2%o after 1500 time slots,
which is about 33% lower than that of the Q-learning based
and PHC based. This is because the DQN-based relay strat-
egy can take continuous SNR as parameters for adversarial
learning and has much larger parameter space than PHC.The
utilization of uAVs has been significantly improved.

L L
o 500 1000 1500

Figure 3: Y-coordinate: utility, X-coordinate: epoch.

In the DQN algorithm, we directly feed the calculated
SINR back to the model for decision making, rather than
using a discrete value to approximate the real SINR like
Q-Learning, PHC and hot-PHC algorithms.In Figure 3, due
to the small Epochs, the advantages of DQN over the other
three algorithms are not obvious.This may be because there
are only two decision states in the simulation experiment,
which greatly limits the performance of the DQN algo-
rithm.And with the increase of EPOCH, DQN has more ob-
vious advantages over the other three algorithms.

In Figure 4, with the increase of Epoch, DQN has
more obvious advantages than the other three algo-
rithms.Compared with the previous three algorithms, DQN
algorithm can obviously realize convergence in a shorter
time, and its effect is slightly improved.As can be seen from
the pseudo-code, the learning process of DQN is to pack-
age the past [state, action, benefit utility, subsequent state]
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Figure 4: Y-coordinate: utility, X-coordinate: epoch.

into replay-buffer, and then randomly sample it each time.So
DQN doesn’t start learning until the replay-uffer fills up for
the first time, so it starts a little later than other algorithms.As
shown in the Figure 4.

6 Conclusion

In this report, based on the mature VANET communication
anti-jamming model, we deeply simulated the actual model
scene in detail. Firstly, we reproduced Q-learning and PHC
algorithms as benchmark, and finally realized the UAV relay

strategy based on DQN. So that the UAV has the ability to
assist OBU to resist interference when the jamming model
of intelligent jammer is unknown.Through simulation, we
prove that DQN is better than benchmark in reward, BER
and convergence speed. In a small training period, DQN al-
gorithm is limited to only two possible action Spaces, and its
performance advantage is not obvious. After a long training
period, DQN shows better convergence speed and lower bit
error rate.
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