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Abstract

In 1997, SNK released an arcade fighting game called
KOF97. With the breakthrough and development of
Deep Reinforcement Learning (DRL), it is possible
to train Al to play arcade fighting games. In order
to achieve the goal of Al winning in the King of
Fighters, we propose to use the deep reinforcement
learning model to train the characters in the game, in
order to achieve smooth combo of different charac-
ters.Furthermoreto realize the purpose of Al defeating
the random release skill model and even defeating hu-
man operations. Start the game based on the MAME
simulator environment, and establish the necessary en-
vironment for model training. Based on the process ori-
ented reward mechanism, the role can make skill use
decisions more quickly and smoothly, so as to defeat hu-
man operations in terms of reaction speed and skill use
intensity. Our experiment proves that the performance
of the characters trained by our model really exceeds
that of the random skill release model, which shows that
the model really enables the characters to learn to play
games. Due to the limitation of computation ability and
time consuming, our model can only train three charac-
ters, but our work has verified that deep reinforcement
learning has a strong ability in game training.

Introduction

Electronic games have been a hot issue since the 21st cen-
tury. With the development of computer science and tech-
nology, more complex games spring up. However, no mat-
ter how attractive these new games have been, they would
never exceed their predecessors, i.e. the first generation of
electronic games: Super Mario, The King of Fighters, Bat-
tle City, Tetris.... When the electronic games first created,
nothing can be used for reference, these classic games be-
came the founder of the new world of electronic games.
Decades have passed but today’s new games are still drawing
lessons from the original ideas of old games. Moreover, we
spent our younger ages along with these old games, which
contain our memories of youth and cronies, and this is why
our team select the topic of playing electronic games with
machine learning methods.
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Figure 1: Learning results of the model. In the training and
learning of 15000simulator steps training, the model learned
the corresponding basic combo for different roles under the
condition of reducing training loss by setting process ori-
ented reward mechanism, which demonstrated the effective-
ness of the model.

In 1997, SNK released an arcade fighting game called
The King of Fighters’ 97 (KOF97). The hearty combo in the
game, the hot blooded Kyo Kusanagi, the rebellious Yagami,
and Mai Shiranui that provoked many ignorant teenagers fi-
nally created the classic of the times. It also buried a warm
heart to win the title of the [King of Fighters] for every boy
who played KOF "97. With the breakthrough and develop-
ment of Deep Reinforcement Learning (DRL), it is possible
to train Al to play arcade fighting games. In order to live
up to the heart of every hot blooded teenager, and to fur-
ther explore the charm of deep reinforcement learning, our
team plans to use a variety of deep reinforcement learning
technologies, take the arcade fighting game Boxing 97 as
the background, and achieve the goal of AI winning [King
of Fighters], horizontally compare the advantages and disad-
vantages of different depth reinforcement learning networks,
and explore the impact of different manual strategies on Al’s
ability to use combos and combat. At the same time, it is
proposed to explore the learning process of Al from differ-
ent visual angles, and further analyze the role of exploration
networks and strategies in the training process.

Since AlphaGo (Silver et al. 2016) defeated the hu-
man professional champion Go player with a score of 4:1,
Al has gradually moved from perceptual intelligence to
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Figure 2: Our model architecture. First, the agent makes the character randomly select at a certain proportion or execute the
action with the highest reward according to the current state of the screen and the character’s health, the number of winning
fields, relative position, energy, defense state and other information, and then waits for the environment to respond. In the
training stage, the reward is calculated by using the output of neural network in a weighted way.

decision-making intelligence. The breakthrough and devel-
opment of its core technology, Deep Reinforcement Learn-
ing (DRL), has made it shine in the fields of bioinforma-
tion (Senior et al. 2020; Jumper et al. 2021; Tunyasuvu-
nakool et al. 2021) , transportation (Tang et al. 2019; Qin,
Tang, and Ye 2019) , automatic driving (O’Kelly et al. 2018;
Lietal. 2019) , security (Jun et al. 2018; Havens, Jiang, and
Sarkar 2018) and games, which also makes it possible for
teenagers to realize their dreams. Therefore, our team plans
to use a variety of in-depth reinforcement learning technolo-
gies, take the arcade fighting game The King of Fighters 97
as the background, and achieve the goal of Al winning [King
of Fighters], horizontally compare the advantages and dis-
advantages of different in-depth reinforcement learning net-
works, and explore the impact of different manual strategies
on AI’s ability to use combos and combat. At the same time,
it is proposed to explore the learning process of Al from
different visual angles, further analyze and explore the role
played by the network and strategies in the training process,
and provide more scientific theoretical support for young
people to realize their dreams and win the title of [King of
Fighters].

Related work

Deep reinforcement learning algorithms. In recent
years, deep reinforcement learning methods have achieved
remarkable results in both turn-based and real-time games,
and become the highest level of Al representation in many

games. Deep reinforcement learning effectively combines
the respective advantages of deep neural networks and
reinforcement learning for solving end-to-end sequential
decision optimization problems of intelligences in high-
dimensional state spaces. DQN (Mnih et al. 2013) is the first
end-to-end deep reinforcement learning algorithm. Since it
was designed for video games, it uses a convolutional neural
network to learn the state action value function Q. Specif-
ically, the input of the network is a sequence of processed
images, and after the convolutional network operation, the
output is the value corresponding to all actions, thus realiz-
ing the function of Q. Dueling DQN (Freitas et al. 2016) and
Double DQN (Van Hasselt, Guez, and Silver 2016) are two
variants of DQN, where Double DQN is based on a mutu-
ally supervised idea of using two Q networks of the same
structure with deviating parameters for evaluation to solve
the problem of large Q values in DQN. The Dueling DQN
network architecture is an idea to improve the DQN algo-
rithm by optimizing the network structure.

Application of deep reinforcement learning in games.
Deep reinforcement learning, as one of the hot research di-
rections in recent years, has received a lot of attention due to
its excellent performance on Go and other video games. Un-
like traditional deep learning, deep reinforcement learning
allows an intelligent body to explore in the environment to
learn strategies without labeled samples. For example, Al-
phaGo Zero (Silver et al. 2017) developed by DeepMind



completely abused humans on Go without using any hu-
man Go data; Dota Five (Berner et al. 2019) developed by
OpenAl reached the top level of human players on DOTA
game; AlphaStar (Vinyals et al. 2019) developed by Deep-
Mind also defeated human professional players in StarCraft.
These have become milestones in the development of deep
reinforcement learning, proving the power of deep reinforce-
ment learning in gaming scenarios.

Real-time fighting games are a challenging and enjoyable
real-time game problem. It requires an intelligent body to
make an effective choice from a large set of candidate moves
in a very short reaction time. Real-time fighting games are
usually played in a 1 vs. 1 format, with a fixed initial blood
value and zero initial energy value, so that the opponent
can be effectively hit to gain energy value and take high
damage actions according to the accumulated energy value,
and finally defeat the opponent by the blood difference.
According to the action space dimension, fighting games
can be divided into two types: 2-dimensional space and 3-
dimensional space. Real-time fighting games interact with
the environment through trial-and-error reinforcement learn-
ing, effectively balancing the relationship between explo-
ration and exploitation in the unknown environment of the
model, and learning the optimal strategy by maximizing the
reward signal obtained from cumulative sampling.

The data triples for real time fighting games are state, ac-
tion and reward signals. The game engine provides the input
state information to the model, either as a one-dimensional
physical value or as a two-dimensional game screen. Fight-
ing game states include: character attributes, skill attributes,
distance attributes, and time attributes. The character at-
tributes are blood, energy, position, speed, movement, char-
acter state (e.g. standing, crouching, falling, empty) and re-
maining action frames; the skill attributes are energy con-
sumption, skill damage and skill attack attributes (e.g. close
attack or long range); the distance attributes are the relative
physical distance and position of the two sides; and the time
attributes are the remaining game time or frame count. The
action space is discretized and represented as a set of can-
didate actions in terms of executable actions. The reward
signal is used as a guide to motivate the intelligent model
to master the fighting strategy by using the final win/lose
signal, the blood difference and the step penalty as reward
guides. The specific inference and optimization process of
deep reinforcement learning is shown in Figure 1. Thus, the
deep reinforcement learning method can be directly adapted
to the fighting game task solving process.

Application of reinforcement learning in open world
games. Open-world games are a type of roaming game
level design in which players are free to roam around a vir-
tual world, freely choosing when and how to complete the
game tasks, and constantly opening up new maps. Currently
the more popular open-world games are the Genshin Impact
developed by Mihayo. The game character generation and
character animation cannot be generated without deep rein-
forcement learning methods.

In the Genshin Impact game there are different main
quests as well as linear quests, and in each quest there are

a large number of NPCs to help complete the game’s plot
increasing the challenge of the game and making the game’s
world more realistic. Deep reinforcement learning is to let
the intelligence explore the environment continuously and
learn by trial and error to maximize the accumulated rewards
to get the optimal strategy, which means it does not need
to have ready-made labeled samples or artificially written
rules, so using deep reinforcement learning to game NPCs
would be a worthy solution to consider.

To apply reinforcement learning in the Genshin Impact’s
game scenario, the first thing to do is to abstract the scene as
an MDP. Taking the NPC to be trained as the intelligence,
the game it faces as the environment, and the character gets
its current state and rewards from the game and makes the
corresponding actions. The state is used to represent the fea-
ture information of the current character, either directly from
the raw information of the current game screen, which is
then encoded by techniques such as CNN to extract features,
or semantic information extracted through the game API.
Similarly, the character’s action can be the same keystroke
information as the human player, or it can be a direct control
of a higher level of action API. The reward part, where dif-
ferent rewards imply different learning goals, needs to be de-
signed according to the goals and want to achieve. In simpler
games, the reward can be directly the score over time or even
the win/loss of a game, while in more complex games, such
a simple setup may not be trainable or converge slowly. This
part is also known as reward engineering in reinforcement
learning applications After abstracting the game as an MDP,
it can choose the appropriate reinforcement learning algo-
rithm for training, such as DQN algorithm, PPO algorithm,
etc. Similar to other machine learning methods, the hyperpa-
rameters, network structure, and even the learning algorithm
inside these algorithms affect the learning effect and need to
be adjusted according to the training effect, as well as the re-
ward part needs to be re-optimized and designed according
to the effect.

The characters in the Genshin Impact come to life with a
very smooth and organic movement effect. To achieve this
effect, there are various solutions, from the earliest sprite
animation and rigid stratum animation to today’s masked
animation, and the rendering is enhanced step by step, but
it is difficult to simulate the diversity of behaviors exhib-
ited in the real world, and it is often labor-intensive to de-
sign the control logic manually and difficult to adapt to new
scenarios and situations. To address this problem, reinforce-
ment learning offers a possible idea for motion synthesis, in
which an intelligent body learns by trial and error in repeat-
edly performing actions of various skills to reduce the heavy
reliance on human labor. However, simply allowing an in-
telligent body to explore freely may produce actions that do
not affect the skill goal but are meaningless, such as irrele-
vant upper body movements, awkward postures, etc. While
the movements can be made more natural by incorporating
more realistic bioengineering models, it is very difficult to
construct high-fidelity models and the resulting movements
are likely to remain unnatural. Therefore, an ideal system for
automatically generating character animations should first
provide the intelligence with a set of reference actions that



meet the requirements, and then use them as a basis for
generating behavioral actions that match the target and are
physically realistic. For example, attempts to use DeepLoco,
which uses deep reinforcement learning methods to imitate
motion data, and Generative Adversarial Imitation Learning
(GAIL) methods to generate actions have yielded good re-
sults.

Methods

DQN is a reinforcement learning algorithm based on Q
learning and deep learning. It is able to compare the ex-
pected utility of the available operations (for a given state)
without the need for an environment model. Also it can han-
dle stochastic transition and reward problems without the
need for tuning. It has now been shown that for any finite
MDP, Q learning eventually finds an optimal policy where
the expected value of the total reward return is maximally
achievable for all successive steps starting from the current
state. Before learning starts, Q is initialized to a possible
arbitrary fixed value (chosen by the programmer). Then at
each time ¢, the agent chooses an action a;, then gets a re-
ward R;, and enters a new state S;y; and the Q value is
updated. At its core is the value function iteration process,
as:
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where « is the learning rate, -y is the discount factor. First
initialize the value function matrix, start the episode, then
select a state state, while the intelligence selects the action
according to its own greedy strategy. After the intelligence
will apply the action to get a reward R and S’, calculate the
value function, and continue to iterate the next process.

The reward r is defined as the change in the game score
after taking action a at the current time ¢, state s is taken as
T, as:

1 increase
Ty = 0 noexchange 2)
-1 decrese

And long-term cumulative discount rewards R; are then
defined as:

T
Ry = Z’Ykrt+k+1 3)
k=0

Therefore the core of the whole process becomes how
to determine to approximate the value 6 of the function.
The most classical approach is to use gradient descent min-
imization loss function to continuously debug the network
weights. Loss function is defined as:

L; (91) = E(s,a,r,si)NU(D)
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where 6 is the target network parameter for the i, iter-
ation and 6 is the Q-network parameter. The next step is to

find the gradient, as:

OL; (6;)
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Proposed solution

In this paper, the MAME simulator environment is first built
to start the arcade game King of Fight 97. Meanwhile, the
debugger mode of MAME is used to search for the screen,
health, number of wins, relative position of the relevant char-
acters, as well as the number of seconds, milliseconds and
other related static memory addresses during the game. This
is used to calculate the reward value and determine the com-
bat status to control the further action of the game. At the
same time, the open source framework MAMEToolkit is
used to control the MAME simulator, so as to realize the
game starting, coin slot, role control and other operations,
and finally build the necessary Environment for reinforce-
ment learning.

Among them, the LUA engine port used to operate the
MAME simulator and the corresponding Field are respec-
tively forward move, backward move, squat, jump, light
punch, light leg, heavy punch, heavy leg, menu bar, coin
slot and so on to control the game frame by frame. The fi-
nal required memory address includes the character’s health,
number of wins, relative position, energy, defense status, etc.

Specifically, we first use the game minute hand, millisec-
ond and health to determine whether it is a battle state. Dur-
ing the battle, we need to obtain the corresponding frame
number and related memory address to input the network
to calculate the relevant reward value. The number of wins
and battle status of the character can be used to determine
whether this is the end of a certain round, whether to enter
the next stage of the battle, or whether the game is over and
the game needs to be restarted.

The detailed reinforcement learning flow chart is shown in
Figure 2. First, the Agent makes the role randomly select or
execute the action with the highest reward according to a cer-
tain proportion of the information of the current state and the
character’s health, number of wins, relative position, energy,
defense state, etc. Then the environment responds and cal-
culates the reward. In our earlier version, The environment
returns the difference between our lives and the lives of the
other as a reward. After that, due to the execution of the ac-
tion, the status of the characters in the environment changes,
and reinforcement learning enters the next step. Before pro-
ceeding to the next round of decision process, the new state
is also captured and combined with the previous informa-
tion to form a memory data, which contains State(t), Action,
Reward, State(t+1).

Experiment

Firstly, we selected three characters (Cao Zhanjing, Chen
Guohan and Iori) for a total of 15,000 simulator steps train-
ing. The network learning rate was 0.005, the Agent’s initial
exploration rate was 0.9, and the exploration rate decay was
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Figure 3: the health curve of the proposed method versus the
random Al in the first round

0.9. Online learning was conducted every 500 samples. We
want to maximize the reward value during training, and the
reason the reward system is not based on winning is because
we consider that the reward value is delayed, making train-
ing more difficult and time-consuming. Figure 3 shows the
health curve of the proposed method versus the random Al
in one experiential test process.

According to the observation of the experiment, we also
found that the weight of the direction control press is differ-
ent from that of the strike control. The direction control is
only effective for one frame and has little influence in the
game. However, the strike control, once pressed, lasts for a
number of frames and has a significant impact in the game.
For example, it takes many frames to complete the action of
boxing. This means that an action taken in one frame will
continue for many frames.

In addition, while the strike press is important compared
to the directional control press, it requires a correspondingly
more frequent press to be effective. To complete this action,
and to humanize the Al action, we had the Al press the but-
ton repeatedly for 20 frames (1/3 of a second) before mov-
ing on to the next action. In other words, we’re asking the
Al to take actions and observe results in 1/3 of a second of
play time, rather than per frame. According to the decision
of Al it can be found that Al has learned some combo moves
in the training process, including forward charge, backward
defense, jump kick, energy placement and so on.

Conclusion

In order to improve the ability of Al Boxing Emperor, our
team members began to learn reinforcement learning from
zero learning, built the Boxing Emperor environment from
zero, and tried to build three reinforcement learning frame-
works, including DQN, DDQN and Dueling DQN, and fi-
nally chose the original DQN model. But there is still a lot
of room for improvement in the early versions of the cur-
rent model, for two reasons. First, our team did not model
the consistent movement of the characters, which is the key
to the Emperor’s victory. Second, the setting of the environ-
ment still has some deficiencies. For these two problems, we
will improve later.
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