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Abstract

The task of survival prediction based on clinical and fol-
lowup data of cancer patients is challenging. Although the
Graph Neural Network methods of Multi Instance Learning
(MIL) has made great progress in this field by organizing
the Whole Slide Images (WSIs) of patients, the effect of dif-
ferent methods varies with the context-aware informatioin
of the type of cancer. In this paper, inspired by the differ-
entiable search scheme of Pooling Architecture Search for
graph classification, we present DAS-GCN, a survival predic-
tion scheme on WSIs based on the proposed Differentiable
Arch Search framework for finding a suitable pre-defined
graph convolutional network. Our method consists of three
major components. Firstly, we propose a differentiable frame-
work for searching each module of a GNN. Furthermore, pre-
trained finetuning is used to improved the generalization of
the searched model. Finally, based on the first two steps, we
propose a context-aware WSI space construction network and
used the multi-level Graph Readout method to predict the risk
of survival analysis. Experiments will be conducted on six
TCGA cancer datasets.

Introduction

Survival analysis of clinical survival data aims to analyze
and help clinicians make early decisions about treatment,
which is crucial for the patients’ healthware. Howerver, cen-
soring attribute of the survival data makes survival analy-
sis different from other prediction approaches. Tradition-
ally, the most popular model for survival analysis is Cox
proportional hazards model [1]. However, the Cox model is
based on linear assumption and fails to consider the time fac-
tor, which is too simply for real-world scenarios. Therefore,
more survival models are needed to fit nonlinear scenarios.
The prosperity of deep learning especially GNNs drives
reseachers to explore DL-based survival analysis models on
graph structure data. Such GNNs (GCN [2], GAT [3], GIN
[4] and GraphSAGE [5]), make it possible to obtain the
topological information in the graph structure with its con-
textaware. For example, on survival analysis task, Li R et al.
[6] proposed DeepGraphSurv, which use intermediate patch-
wise features to construct graph structure, and use GCN to
integrate random local patch features with global topolog-
ical structures. Instead of sampling random patch features
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from WSIs as nodes and connecting these nodes on the em-
bedding space, Patch-GCN [7] building graphs via adjacent
patches and it performs better than DeepGraphConv.

Recently, Neural Architecture Search (NAS) methods
were successfully transfered from automatically searching
state of the art (SOTA) CNN architectures to SOTA GNN
architectures in a pre-defined search space and representa-
tive methods, such as GraphNAS [8], Auto-GNN [9], Au-
toGM [10], etc. However, most of these methods search
on a discrete space, which is to large. The recently pro-
posed differentiable search framework accelerates the learn-
ing time by turning the discrete problem into a continuous
problem, which can search the neural network architecture
efficicently. Therefore, inspired by PAS(Pool Architecture
Search) [11], we proposed DAS-GCN on WSIs for survival
prediction. Our methods consists of three parts: a) A differ-
entiable framework for automatically searching each module
of a GNN. b) Generalization improvement of the searched
model by pretrained finetuning. c¢) A context-aware WSI
space construction network used for predicting the risk of
survival analysis after the multi-level Graph Readout. And
we will conduct experiements on six TCGA canner datasets.
Our contributions can be as followed:

* Firstly, we propose a differentiable framework automat-
ically searching each module of a GNN, which can nar-
row the search space and improve the efficiency.

» Furthermore, we adopt pretrained finetuning to improve
the generalization of the searched model.

* Finally, we use a context-aware WSI space construc-
tion network to predict the risk of survival analysis after
multi-level Graph Readout.

Related Work
Graph Neural Network

The birth of GNNs make it possible to process the data rep-
resented in non-Euclidean space, such as graph data. Thus,
GNNs can be applied to meet the requirements of various
graph related learning tasks.

In general, graph neural networks can be divided into five
categories based on a classification proposed by Zonghan
Wau et al. [12], including RecGNN (recurrent graph neural
network), GCN (graph convolutional networks), AutoGNN



(graph autoencoder), STGCN (spatio-temporal graph con-
volutional network) and GAT (graph attention network).

RecGNN extended from RNN model and it updates node
states by recursively exchanging domain information based
on information diffusion mechanism. GCNs was based on
two parallel model methods, spatial based method and spec-
tral based method respectively. And it borns with great
sucess of CNN in computer vision [13]. AutoGNN [14] was
deep neural networks that map nodes to latent feature spaces
and decode graphical information from their latent represen-
tations. STGCN [15] was generated to adapt to the dynamic
nature of graph structure and graph input which can be ef-
fectively applied to sequence data. GAT [3] was the network
that introduces attention mechanism into traditional GNNs
which can extract the different influence features of neigh-
boring points on nodes.

Neural Architecture Search

NAS (Neural Architecture Search) methods proposed to au-
tomatically find outperformed CNN architectures in a cer-
tain search space have been transferred to GNN, e.g. Graph-
NAS [8], AutoGNN [9], AutoGM [10], DSS [16], SANE
[17], AutoGraph [18] and Policy-GNN [19]. However, most
of the existing methods based on methods to select archi-
tectures from the discrete search space, which is computa-
tionally expensive. Recently proposed differentiable search
algorithms construct an over-parameterized network and op-
timize this network with gradient descent due to the contin-
uous relaxation of the search space. Representative work is
DARTS [20] which approach the efficiency problem from
a different angle. DARTS[20] continuously relax the search
space instead of searching over a discrete set of candidate
architectures, so that the architecture can be optimized with
respect to its validation set performance by gradient de-
scent. Compared with existing methods mentioned above,
PAS [11] provides one search space that can cover existing
pooling methods and one coarsening strategy to develop an
efficient data-specific pooling architecture learning method.
Therefore, we choose PAS to search for the outperformed
architecture for graph-level tasks.

Survival Analysis

In recent years, based on the convenience of various data ac-
quisition and advanced deep learning paradigms, many ef-
fective frameworks have been proposed for survival anal-
ysis in WSIs [6, 7, 21, 22]. For example, Zhu et al. [23]
developed a WSISA manner by adaptively sampling and
clustering patches from each WSI as the input to a convo-
Iutional neural network for survival prediction, which was
the first trial of moving survival prediction onto WSIs. Li
et al. [6] modeled each WSI as a graph and then proposed
a graph convolutional neural network with attention learn-
ing that better serves the survival prediction by rendering
the optimal graph representations of WSIs. Chen et al. [7]
presented Patch-GCN, a context-aware, spatially-resolved
patch-based graph convolutional network that hierarchically
aggregates instance-level histology features to model local-
level and global-level topological structures in the tumor
micro-environment. However, due to the poor computation

and iteration capability of neural networks, existing methods
have limited efficiency in WSIs-based survival analysis.

Proposed Solution

In this section we will describe the proposed DAS-GCN, in-
cluding Problem Formulation, Framework overview and the
design and search space of predefined layer modules.

Problem Formulation

Assuming there are datasets with WSIs: W = {W7, W, ...,
Wi} and related Clinical information Y = {(7;, C;)|i €
{1,---, N}}, including survival time 7" and censorship sta-
tus C'. Multi Instance Learning (MIL) approach is widely
used in survival analysis while Graph construction is the
key step [7]. To construct graph G, firstly, it is necessary
to screen the patches of WSI segmentation. First, the low-
resolution WSI is converted from RGB to HSV color space,
and then the foreground space mask of effective pathologi-
cal tissue is obtained by the binary threshold discrimination
method. Each slide at 20x magnification is split into the
number of small patches P; = {p; ;|i € {1,---,N},j €
{1,2,--+,n;}} with non-overlapping by PyHIST [24], n; is
the number of patches that the i*” slide is divided into. We
define a feature extractor: d : p; j — fi;, fi; € Fj, so that
each patch uses ImageNet pre-trained ResNet50 Network to
extract 1024-dimensional features and serve as the node fea-
tures of Graph. After the location information (x; ;, y;, ;) co-
ordinates saved by patch, we use to build an adjacency ma-
trix A; for each W; via K Nearest Neighbor Algorithm (k =
8) that models a 3 x3 image receptive field in CNN convo-
lutions. Then define the constructed graph as G < F;, A; >
as the input to the network model. Survival prediction tasks
usually employ the cox proportional-hazards model. Sur-
vival Function is denoted as S(¢) and represents the proba-
bility that the survival time of the observed object crosses the
time point ¢. The risk function represents the survival time
after reaching t. The probability of failure, we can use h(t) to
express, h(t) = f(t)/S(t). Where f(t) is the probability den-
sity function, the probability density function is the recipro-
cal of the cumulative distribution function F'(¢) (Cumula-
tive Distribution Function), and the relationship between the
cumulative distribution function and the survival function is
F(t) = 1—S5(t). The cumulative distribution function repre-
sents the probability that survival time does not exceed time
point t. Cumulative Hazard Function H (t) = —logS(t) For
the COX model, we have h(t, z) = ho(t)exp(8X), while X
is relevant factors that may affect survival time are covariates
that do not change over time, while is also the premise of the
Cox regression model, and hazards h requires the model to
predict.

Framework Overview

We propose a framework DAS-GCN to automatically learn
data-specific architectures of Graph Convolutional Network,
which consists of Aggregation, Pooling, Readout operation
and Multi-Level Graph representation Merge Modules [11].
Based on this framework, an efficient search structure is pro-
posed, where we embed convolution, pooling and readout
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Figure 1: Overview of DAS-GCN

modules in each layer, and predefine a suitable search space
in each module. Each module is described in detail below.
As shown in Figure 1, for the input Graph G; of the i*" layer,
Aggregation Module aggregates first-order neighborhood
features. By iteratively aggregating the representations of its
k-num neighbors, the own representation G =< A;, F* >
capturing the structural information within k-hop neighbor-
hoods can be generated. Then the graph will be passed to the
Pooling Module to generate the graph GY =< A,;, Fy >.
After the Pooling Module, the Readout module is used for
condensing representation of G¥ to generate z; of the ith
layer. Finally we merge hierarchically all pooling graphs to
learn WSI representation features at different scales better
result in 2. After that MLP layers are used to generate haz-
ards of the patients according to the Cox regression Model.

Table 1: Candidate operations in each module

Aggregation O, GCN, GAT, SAGE,GIN,
TransformerConv, etc.
Pooling O,, TopKPooling, SagPooling HopPoing,
Global Attention Pooling, NONE, etc.
Readout O,. Global,,,;, Global 4,
Global,,,.., Global,,,cqn, €tc.
Merge O,, LSTM, MAX, Concat, MEAN, SUM, etc

Search Space of Predefined Layer Modules

Based on this framework, an effective search space can be
designed naturally by including artificially designed opera-
tions, we design one search space with a set of candidate
operations as shown in Table 1. We add NONE rations in
the pool module, which means that pool operations are not
used.

We assign learnable weight to the operation of each mod-
ule in each layer w; p, M € {a,p,r, m}, after learning the
weight of the network structure, load the corresponding pa-
rameters, and select single path for finetune, which conforms
to the efficient network search mode, reduces the network
parameters, and speeds up the network fitting.

Differentiable Search Method

In this section, we will explain in detail how to search
through the differentiable graph network, so that the relax-
ation operation for each layer can be carried out.

Generally speaking, for several predefined operations of
each module, the relaxation operation and differentiable
weighted summation can be performed by mapping the dis-
crete space to the continuous space as follows:

[On|
Om(z) = Z War,i ® onr,i(x)
K3
where x represents the input representation of each module
M, Wy, ; denotes the weights of operation of ops ;(+). Wy ;
usually expressed as a reparameterization technique to de-
termine the network structure parameters Wy ;, which is the
corresponding learnable parameter for the input representa-
tion and the current state of the network.

Optimization and Loss function

The survival output of pathology modality output R, can be
calculated as :

R, = MLP(zp)
Therefore the Cox loss of 2, is calculated by:

LY, 25 i)+1log > exp(Ry(j)))

J: t] >t;



where B is the patients number of minibatch, R, (i) and
R, (j) denote the survival output of finetune network of i'"
and j'" patient. Regularization loss L., = ||0| is usually
added to prevent the model from overfitting additionally.
The structural parameters of W are already constrained at
initialization, and regularization is unnecessary. In summary
the total loss of the whole framework is define as:

Liotar = AeLcox + )\TegLreg

where A and A, are the trade-off parameters. The specific
hyperparameter settings and implementation details can be
found in Experiment part.

Experiments

To verify the effectiveness of the method proposed in this
paper, in this section we will carry out comparison exper-
iments and ablation experiments based on the datasets de-
scribed below.

Datasets

Six of the largest cancer datasets from The Cancer Geno-me
Atlas (TCGA), a public cancer data consortium that con-
tains matched clinical records, diagnostic WSIs, and genom-
ic data with labeled survival times and censorship statuses,
were used to validate our proposed method.

We used the following cancer cohorts for this study:
Glioma (GB-MLGG, 1011 cases), Kidney Renal Clear Cell
Carcinom-a (KIRC, 385 cases), Liver Hepatocell-ular Car-
cinoma (LIHC, 287 cases), Lung Adenocarcinoma (LUAD,
452 cases), Lung Squamous Cell Carcinoma (LUSC, 438
cases), Uterine Corpus Endometrial Carcinoma (UCEC, 387
cases). The clinical records for each dataset are included
in the supplementary material. All pathological slides are
normalized to 10 magnification, with some patients having
graph sizes as large as 30000 instances.

Evaluation Metric

As an evaluation metric, the concordance index (CI) is used.
The CI index measures the proportion of all pairs of patients
whose survival risks are correctly ordered. The confidence
interval (CI) ranges from O to 1, with higher CI values in-
dicating better survival prediction performance. The mean
and standard deviation of 5 randomly repeated 5-fold CVs
(5-fold CVs) are reported. It should be noted that during the
cross-validation procedure, 20% of the training data is ran-
domly split and tuned to determine the checkpoint.

Baselines

We use 4 different baseline methods, MIL method using
summary of the instance set (MIL_Sum_FC), Attention-
based deep multiple instance learning (ABMIL, MIL_At-
t_.FC), Graph CNN for survival analysis on whole slide
pathological images (DeepGraph) and Whold Slide Images
are 2D Point Clouds: Context-Aware Survival Prediction us-
ing Patch-based GCN (Patch-GCN).

Among these methods, MIL_Sum_FC focuses on how
to aggregate all of the instance information in WSI and
it simply uses the sum operation to obtain the WSI-level

information. MIL_Att_FC methods have received attention
in computational pathology, where they have been used to
solve problems such as cancer classification, cancer grad-
ing, and survival analysis to determine the most relevant in-
stance of survival risk in a weighted case. As opposed to
the conventional COX model, DeepSurv uses a deeper net-
work (more than one hidden layer) and more sophisticated
training methods like BatchNorm, Dropout, etc. Therefore,
compared with the traditional cox model, DeepSurv does
not need prior knowledge. Patch-GCN improves this ad-
vantage and highlights the relevance of generating graphs
via neighboring patches rather than feature similarity in the
embedding space. DeepGraph samples random patch char-
acteristics from WSIs as nodes and connects these nodes
on the embedding space. In contrast to cell-to-cell interac-
tions between tumor cells and other cell types, DeepGraph
has a higher c-Index on cancer kinds that correlates with
global-level morphological variables including tumor size
and depth of invasion in the myometrium.

Implementation details

We use ResNet50 pretrained on ImageNet Dataset to extract
the features of instances with the size of 512 x 512. During
training process, the dimension of each feature embedding is
reduced from 1024 to 256 by a fully connected layer. Finally
the feature embedding of each bag WSI can be represented
as H; € R™*%12 We trained all the network with a batch
size of 32 for 150 epochs for all datasets using Adaptive
moment estimation (Adam) with initial learning rate of 7e-5
and weight decay of 1e-5 on NVIDIA GeForce RTX 3090Ti
(24GB). The learning rate would be scheduled by Cosine
learning rate scheduler with 1/4 period ending with le-7.
In the inference step, the sigmoid is used to normalize the
predicted scores for patients’ hazards for all experiments.

Experiment Results

Performance Comparisons We used four methods with
varying emphasis on six representative cancer datasets to
evaluate the performance of the model compared with the
methods presented in this paper.

As shown in Table 2, DAS-GCN has achieved the best
performance on UCEC, LIHI, KIRC, LUAD and LUSC data
sets, which indicates that the proposed method has excellent
effect and better universality. Compared with MIL_Sum_FC
method, our method is superior in all data sets, which in-
dicates that our method can summarize instance sets better
to form better global information. In addition, our method
performs better than PatchGCN on all datasets, so it can
be considered that our method can aggregate local infor-
mation more effectively. Although the performance of our
method on the larger dataset GBMLGG is slightly inferior to
MIL_Attn_FC and DeepGraph, it still performs well on the
remaining smaller datasets. This shows that our method can
retain better global information even with a small amount
of data, that is, our method has the advantage of not rely-
ing on data sets with a large amount of data for training. To
sum up, our method can not only effectively retain global
information and extract local information, but also has the



Table 2: Performance comparison between four SOTA methods with our proposed method
on six of the largest cancer datasets from TCGA.

DeepGraph

PatchGCN  MIL_Sum_FC_surv MIL_Attn_FC_surv DAS-GCN (Ours)

GBMLGG 0.7160 £0.0134 0.7128 £0.0157

UCEC  0.6230 +0.0378 0.6324 £0.0114
LIHC  0.6163 £0.0197 0.6152 £+0.0202
KIRC 0.6522 £0.014 0.6657 £0.0058
LUAD 0.5454 £0.0326 0.5563 £0.0135
LUSC  0.5584 £0.0197 0.5781 +0.0192

0.5756 £0.0051
0.5617 +0.0167
0.5162 £+0.0061
0.4831 +0.02
0.4779 £0.0245
0.4972 £0.0041

0.7181 +0.0183 0.7153 +0.0284

0.6224 £0.0291
0.6127 £0.0128
0.6641 +0.0101
0.5505 £0.0215
0.5429 £+0.0173

0.6460 + 0.0271
0.6259 £+ 0.0195
0.6883 +0.0153
0.5734 + 0.0246
0.5791 + 0.0149

Table 3: Influence of Num_layers in search space.

Num_Layer = 1

Num_Layer =2

Num_Layer =3 Auto_Search_Layer

GBMLGG 0.6947 £0.0367

0.7057 £0.0245

UCEC  0.6247 £0.021  0.6349 +0.0281

LIHC  0.6228 £0.0401 0.6199 £0.0379

KIRC  0.6576 £0.0235 0.6712 £0.0244

LUAD 0.5697 £0.0171 0.5824 + 0.0211 0.5701 £0.0188
LUSC

0.7116 £0.0201 0.7153 £+ 0.0284
0.6375 £0.0279 0.6460 + 0.0271
0.6237 £0.0255 0.6259 + 0.0195
0.6619 +0.0214 0.6883 +0.0153
0.5734 £0.0246

0.5715 £0.0245 0.5677 £0.0116  0.5621 +0.0222 0.5791 + 0.0149

characteristics of not relying on large amounts of data, and
the overall performance is quite excellent.

Ablation Studies An ablation study was performed to
show the influences of the number of module layers in the
search space, for which results are shown in Table 3. We
search for the number of layers based on other fixed network
architectures, and the cases where the layer number is 1, 2,
3, and automated are discussed. As shown in Table 3, the
automated number achieved the best results on all datasets
except LUAD. For example, compared to the fixed mod-
ule layer numbers, the search strategy can improve accuracy
with 1.7% and has the minimum standard variance in KIRC
dataset. This observation demonstrates the importance of in-
cluding the number of module layers in the search space,
which can verify the superiority of the automated number
searched by DAS-GCN over human-designed numbers.

Conclusion

Despite the progress made in the field of survival prediction,
the different method varies with the context-aware informa-
tion of the type of cancer. In this paper, we present DAS-
GCN, a survival prediction scheme on WSIs based on the
proposed Differentiable Arch Search framework for finding
a suitable pre-defined graph convolutional network. In com-
paring DAS-GCN to the sort-of-the-art methods, we observe
that DAS-GCN outperforms all prior approaches on 5 cancer
types in the TCGA. Moreover, we demonstrate the improve-
ment in selecting the numbers of network’s layer by auto
searching instead of a fixed setting, which proves the impor-
tance of DAS. All these experimental results on WSI sur-
vival prediction tasks have demonstrated the effectiveness
and robustness of our proposed survival prediction scheme.
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