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Abstract

Current thinking in dealing with text classification tasks is
often limited to fine-tuning on downstream tasks using auto-
coding or autoregressive pre-training models. Current re-
search has focused on how to design the training task so that
it trains larger and better models, but most of the work is still
based on pre-trained masked language models like Bert.In
this paper, we try to combine different backbone networks
to discover how to combine the advantages of different back-
bone networks more efficiently to achieve better processing
of text information, and try to make improvements and break-
throughs in the structure of the pre-trained model itself. In this
paper, we will test CNN, RNN, LSTM, and Bert models indi-
vidually and with different fusion strategies on IMDB dataset,
and we will try to determine the opportunities for structural
improvements.

Introduction
Text classification refers to the automatic classification and
labeling of text (or other entities) by computer according to a
certain classification system or criteria. It has numerous ap-
plication scenarios and is a fundamental component of many
NLP programs. Examples include sentiment analysis[1], re-
lationship extraction[2], and spam detection[3].

Therefore many researchers have proposed different mod-
els to improve the accuracy of text classification. Bag-of-
words model uses a set of unordered words to represent a
paragraph or a document[4]. However, it cannot encode dis-
course order and syntactic features. Recurrent neural net-
works are used in the field of natural language process-
ing due to their time-series processing in a similar way to
text reading. The model structure is able to learn historical
and positional information efficiently, which helps to solve
the long-distance dependency problem. Examples include
RNNs using 1D max-pool operations[5] or attention-based
operations[6].

Long-term short-term memory networks use forgetting
gate structure to filter the transmission of textual information
therefore can capture connections between contextual fea-
ture words over longer time scales and mitigate the gradient
disappearance problem in RNNs by increasing the param-
eter matrix. However, the training of RNN/LSTM is time-
consuming due to the large memory bandwidth required for
the linear layer to perform the computation, and the LSTM

does not completely solve the gradient disappearance prob-
lem.

Kim designed an unbiased model of convolutional neu-
ral networks to successfully use CNNs for text classification
tasks, called TextCNN[7]. It can better determine the dis-
tinguished phrases in the maximum pooling layer by one
layer of convolution and learn hyperparameters other than
the word vector by keeping the word vector static. However
the inductive bias of CNN locality does not apply on long
texts.

Recently, Jacob Devlin et al. proposed the BERT (Bidi-
rectional Encoder representation from Transformers) pre-
trained language model[8], which contains a deep two-
channel transformer network to better learn semantic knowl-
edge.

Bert changed the technical development of the NLP field.
Since then researchers have tended to limit themselves to
how to design the training task to train a better pre-trained
mask model, ignoring the impact on the task caused by
the characteristics of the different backbone networks them-
selves.

In this paper, we try to combine different backbone net-
works and explore how to more effectively combine the ad-
vantages of different backbone networks to achieve better
representation of text information. In this paper, we will
test the CNN, RNN, LSTM and Bert models separately on
IMDB datasets and test the results using different fusion
strategies. In the end, Bert directly combined with lstm has
the best performance, reaching 92.99

Related work
Neural network models based on deep learning have
achieved good results on text classification tasks.These mod-
els typically use a projection layer to map text words to
a high-dimensional vector. The vectors are then combined
with different neural networks to output a fixed-length rep-
resentation. Depending on the structure of the backbone net-
work, we classify the following four types: RNN, CNN,
Transformer, and other neural networks.

Recurrent Neural Network (RNN)[9]. The most impor-
tant aspect of solving large-scale text classification problems
using deep learning is to solve the problem of text represen-
tation, and then automatically acquire feature representation
capabilities using network structures such as CNN/RNNs,



no longer relying on complex manual feature engineering
thus solving the problem end-to-end. Recurrent neural net-
work (RNN) is a kind of neural network for processing
sequential data. Compared with ordinary neural networks,
it can handle sequential changes in data, and it can effec-
tively learn historical and location information, which helps
to solve long-distance dependency problems. In RNN back-
propagation, the weights are adjusted by the gradient cal-
culated by successive multiplication of the derivatives. If
the derivatives are very small, the continuous multiplica-
tion may have the problem of gradient disappearance. Long
Short Time Memory Network (LSTM)[10] is a special kind
of RNN, which is mainly designed to solve the gradient van-
ishing and gradient explosion problems during the training
of long sequences. It consists of a memory unit and three
gate structures, which are forgetting gate, updating gate and
output gate. It filters invalid information through the forget-
ting gate structure to learn better to longer distance historical
information.

Convolutional Neural Network (CNNs)[11]. CNNs
were originally used for image classification, where con-
volutional filters can extract image features. Unlike RNNS,
CNNS can apply different kernel-defined convolutions to
multiple blocks of a sequence at the same time. As a result,
CNNS is used for many NLP tasks, including text classifica-
tion. For text classification, text needs to be represented as a
vector similar to an image representation, and text features
can be implemented by multiple channels in the convolution
process to filter information from multiple perspectives.

CNNS and RNNS provide good results in tasks related to
text classification, but the drawback is the presence of hid-
den vectors in the middle of these models, which are not in-
tuitive enough and poorly interpretable, especially for some
classification errors, which cannot be explained due to the
unreadability of the hidden data. Therefore, attention mod-
els are proposed.

In essence, the attention mechanism in deep learning is
similar to the human selective visual attention mechanism.
Its core goal is to select the information that is more critical
to the current task goal from a multitude of information. In
fact, in problems involving language or vision, some parts
of the input are more important for decision making than
others, so the use of attention mechanisms often improves
the accuracy of decisions.

Transformer[12].Transformer completely abandons
RNNs and CNNs, and consists only of a self-attentive
mechanism and a forward neural network. transformer can
perform parallel computation without considering sequen-
tial information, and is suitable for large-scale datasets,
which makes it popular for NLP tasks. Bert is one type of
network that uses transformer as its backbone pre-trained
language models. It is a generative language model that uses
Transformer’s encoder. By transforming the input vector
and designing training tasks for Masked LM and Next
Sentence Prediction, Bert effectively learns global semantic
representations and significantly improves the model’s
performance on various NLP tasks, including text classifica-
tion, named entity recognition, question-and-answer tasks,
etc. Subsequent work typically uses an unsupervised ap-

proach to automatically mine semantic knowledge, enabling
the machine to improve its understanding of semantics by
constructing better pre-trained targets.

Other neural networks.Since graph neural networks can
learn the syntactic structure of sentences, some researchers
have tried to apply GNNs to text classification.DGCNN[13]
is a graph network that converts text to graphs and learns
different levels of semantics compared to CNN/RNN mod-
els.Yao et al[14] investigated the text graph convolutional
network (TextGCN), which creates a heterogeneous graph
for the entire dataset constructs a heterogeneous word-text
graph and captures global word co-occurrence information.

Model
We mainly used TextCNN, RNN, LSTM, Bert as compo-
nents and tried different fusion strategies. The details of
the different components are described in the following sec-
tions.

TextCNN
Yoon Kim proposed the textCNN model for text classifi-
cation with some deformations of the input layer of CNN.
textCNN structure is shown in Figure 1, compared with the
traditional image CNN network, textCNN has only one layer
of convolution and one layer of max-pooling in the network
structure, and finally the output is connected to softmax for
the classification task. Compared with CNN networks for
images, the biggest difference of textCNN is the difference
in the input data. The image is two-dimensional data, the
image convolution kernel is sliding from left to right, top
to bottom for feature extraction. Natural language is one-
dimensional data, and although word-embedding generates
a two-dimensional vector, it does not make sense to con-
volve the word vector by sliding it from left to right. For
example, if ”today” corresponds to the vector [0, 0, 0, 0, 0,
1], sliding from left to right by window size of 1*2 gives
four vectors [0,0], [0,0], [0,0], [0, 1], which all correspond
to the word ”today”, this sliding does not help. The success
of TextCNN is not the success of the structure itself, but the
introduction of trained word vectors to achieve performance
beyond benchmark on multiple datasets, further demonstrat-
ing that constructing a better embedding is a key capability
to improve nlp tasks.

RNN
Humans don’t start their thinking from a blank brain every
moment of the day. When humans read texts, they tend to
infer the true meaning of the word at hand based on the un-
derstanding they already have of the word they saw earlier.
We don’t just throw it all away and think with a blank brain.
Our minds possess persistence. RNN simulates this process.
Figure 2 shows the process of RNN understanding text

In the following, we note that x is the input, h is the hid-
den unit, o is the output, L is the loss function, and y is the
label of the training set. The t with the upper right corner of
these elements represents the state at the moment t. V, W,
and U are the weights, and the weights of the same type of



Figure 1: TextCNN structure

weight connections have the same weights. RNN in forward
propagation, for moment t:

h(t) = ϕ(Ux(t) +Wh(t−1) + b)

where ϕ() is the activation function, and in general the tanh
function is chosen, and b is the bias. The output at moment t
is.

o(t) = V h(t) + c

The predicted output of the final model is.

ŷ(t) = σ(o(t))

where σ is the activation function, and usually RNN is used
for classification, so the softmax function is generally used
here. For the back propagation of RNN, there are three pa-
rameters for the optimization search, which are U, V, and W.
The optimization search process for two parameters, W and
U, needs to trace back the previous historical data, and the
parameter V only needs to focus on the present.
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Figure 2: The process of RNN understanding text
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If we put in the activation function and take out the part
of the intermediate cumulative multiplication.
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For the input text sequence, the vector representation of a
word in the input text at each time step of the RNN, calculate
the hidden state at the current time step, and then use it for
the output of the current time step and pass it to the next time
step and use it as the RNN unit input together with the word
vector of the next word, and then calculate the hidden state
of the RNN at the next time step, and so on... until every
word in the input text is processed, which takes n time steps
since the length of the input text is n.

LSTM
RNN has only short-term memory due to gradient dis-
appearance. LSTM network combines short-term memory
with long-term memory through gate control and solves the
problem of gradient disappearance to some extent. Figure
3 shows the cell structure of LSTM, which mainly con-
tains three gates (forget gate, input gate, output gate) and
one memory cell. The horizontal line at the top of the box,
called cell state, is responsible for controlling the informa-
tion passed to the next moment.

We record ft, ct, and ot as the forgetting gate, input gate,
and output gate, respectively, represented by the sigmoid
layer. The two tanh layers in the above figure then corre-
spond to the input and output of the cell, respectively. LSTM
generates a value between 0 and 1 from the output of the pre-
vious moment and the current input to decide how much of
the information learned in the previous moment is retained
Ct−1.

σ (Wf · [ht−1, xt] + bf )

Similarly, LSTM uses the input gate to decide which values
to update with and the tanh layer to generate new candidate



Figure 3: The cell structure of LSTM

Figure 4: The structure of the Bert model

values
it = σ (Wi · [ht−1, xt] + bi)

C̃t = tanh (WC · [ht−1, xt] + bC)

Combining the forgetting gate and the input gate generates
the final candidate value

Ct = ft ∗ Ct−1 + it ∗ C̃t

LSTM uses a sigmoid layer to get an initial output and uses
tanh to scale the candidate values to between [-1,1]. Finally
these two values are multiplied together to get the final out-
put.

ot = σ (Wo [ht−1, xt] + bo)

ht = ot ∗ tanh (Ct)

LSTM process the text sequence the same as a RNN as ex-
plained above in detail.

Bert
The structure of the Bert model is shown in Figure 4, which
is a bidirectional Transformer block connection. The essence
of Bert is to learn the context-based word vector represen-
tation and make good use of the bi-directional information
of the sentence. The structure of each Transformer block of
Bert is illustrated in Figure 5, which is actually the encoder
structure of the Transformer

After the text is first represented as a word vector matrix,
positional encoding information is added to each vector. The
Transformer completely discards the RNN/CNN structure.
It only consists of a multi-headed self-attentive mechanism

Figure 5: The structure of each Transformer block in Bert

and a feedforward neural network with a residual structure.
The self-attentive mechanism is computed as follows[12]:

Attention(Q,K, V ) = softmax

(
QK√
dk

)
V

Q, K, and V are obtained by matrix multiplication of the en-
coded word vectors with three weight matrices WQ, WK ,
and WV , respectively Multihead self-attention is to use mul-
tiple sets of weight matrices WQ, WK , WV simultaneously
to get multiple sets of Query, Keys, Values matrices For the
text classification task, Bert only needs to take the final hid-
den state C of the first CLS tag, add a weight matrix W and
then do Softmax to get the predicted label probability P.

Experiment
Experimental data introduction
IMDB is a dataset for binary sentiment classification with
textual content of clearly polarized movie reviews. The
dataset contains much more data than the previous bench-
mark dataset. It provides a set of 25,000 movie reviews for
training and 25,000 for testing.

Training configuration information
In this experiment, since more than 80% of the sentences in
the dataset are less than 320, we set the maximum length
of sentences output to the neural network to 320 and the
learning rate to 1e -5. Due to limited training resources,
the epoch of learning is set to 4, train batch size to 16 and
test batch size to 32, The weight delay is 0.01.

Analysis of results
We first tested the performance of TextCNN, RNN, LSTM,
and Bert separately. The experimental results are shown in
Table 1. the performance of Bert significantly outperforms



id Model Name Accuracy rate
1 TextCNN 85%
2 RNN 87.72%
3 LSTM 89.63%
4 Bert 91.47%

Table 1: The performance of TextCNN, RNN, LSTM, and
Bert.

id Model Name Accuracy rate
1 Bert+TextCNN 91.96%
2 Bert+RNN 92.86%
3 Bert+LSTM 92.99%
4 Bert+BiLSTM 92.44%
5 Bert+FNN 92.80%

Table 2: The performance of the combination of Bert and
TextCNN, RNN, LSTM, BiLSTM and FNN .

several other networks indicating that a high level of text
understanding can be accomplished with a dynamic vector
representation of words.

Then we tested the combination of Bert and TextCNN,
RNN, LSTM, BiLSTM and FNN respectively.The experi-
mental results are shown in Table 2.

Experiments show that directly feeding Bert’s semantic
representation of the text to TextCNN brings little perfor-
mance improvement afterwards. This indicates that directly
feeding trained semantic information to CNNs cannot ex-
ploit the inductive bias of localization in CNNs. For humans,
there is often a center of focus, and information within a cer-
tain range of this center is given stronger attention relative to
other locations. Our attempt to combine Bert with TextCNN
is also aimed at simulating this distance-centered attention
mechanism in humans. However, for the trained word vec-
tors processing text, even the inclusion of CNNs with local
information interaction has little effect, suggesting that we
should modify the multi-headed attention mechanism in the
encoder structure when training the pre-trained mask lan-
guage model. In the encoder, after each layer of Transformer
block to get the attention result, the position with the largest
attention weight is selected as the center, and the relative dis-
tance information between other positions and this position
is added to the network, and then the Transformer block is
passed again. The effect of adding FNN is not as good as
adding RNN/BiLSTM/LSTM, because FNN itself is part of
the transformer block in bert, and adding FNN is equivalent
to deepening the number of model layers and enhancing the
nonlinear fitting ability, and does not bring other informa-
tion. The combination of Bert and LSTM reached the best
in this experiment, with 92.99% accuracy, which has sur-
passed Roberta’s 92.96 accuracy. This shows that combin-
ing the structure of selectively filtering historical informa-
tion and absorbing current input leads to better semantic un-
derstanding for text sequences. This structural improvement
is no less than designing more complex pre-training tasks
to make the pre-trained model more capable of word vec-
tor representation.The combination of Bert and BiLSTM is

not as effective as the combination of Bert and LSTM be-
cause Bert’s representation of semantics in pretraining has
already combined contextual bi-directional information, and
BiLSTM then goes to do reverse information transfer may
conflict with the hidden information learned by Bert, result-
ing in worse performance than LSTM instead.

Conclusion
This article verifies the performance improvement brought
by the advantages of different network structures for text
classification by comparing the performance of the back-
bone networks commonly used in deep learning so far on
text classification and combining them with each other. It is
demonstrated that network structures such as RNN/LSTM
with recurrent nature of processing information by time step
can be used with Transformer structured models directly
spliced, while CNN direct splicing has less improvement ef-
fect. The combination of Bert and LSTM has the best ef-
fect, reaching 92.96% and surpassing Roberta, demonstrat-
ing that combining Transformer and LSTM backbone net-
works brings no less improvement than improving the se-
mantic representation ability from the pre-training task.If
one wants to combine the advantages of CNN and Trans-
former, one needs to combine on the attention structure of
Transformer by connecting the convolutional feature map
with the self-attentive feature map to enhance the convo-
lutional operation to capture remote interactions. Alterna-
tively, the backbone network of the model adopts a dual-
stream network paradigm, where the Transformer branch
and the CNN branch achieve higher-order information fu-
sion through a well-designed interaction layer. A knowledge
distillation scheme is also considered, using the CNN as a
teacher model to guide the Transformer to converge faster
and learn features with local attention capabilities of the
CNN.

Future work
We found that the fusion of Transformer structures with
CNN structures is more difficult and has more potential than
RNN/LSTM, because Transformer structures tend to focus
more on global information leading to the neglect of local
feature details. In the future, we will try to modify the trans-
former structure using dual-stream networks to obtain infor-
mation representations with both global attention and local
feature details by fusing the information in the convolutional
feature map and the self-attentive feature map, thus improv-
ing the performance on NLP tasks.
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