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Figure 1. Overview of HSLR: We propose a method for 3D reconstruction of the point cloud sequence of the human body and the scene.
The PointNet++ encoder is used to encode the point cloud sequence in time series, input the Point4Transformer network to resample the
features, and then use ST-GCN to predict the based on the context information. Human body SMPL of point cloud sequence, and use
a multi-stage optimized generation method to reconstruct the human body and the scene hybrid. At the same time, in order to test the
generalization of HSLR, we also proposed a Human-Scene data set based on complex rock climbing.
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Abstract

Most of the existing 3D HPE methods are limited to
RGB(Standard Red Green Blue) cameras, and utilizing
RGBD(RGB-Depth) adds additional data overhead. We
propose HSLR (Human Scene Lidar Reconstration), a
method that uses an efficient point cloud encoder for feature
extraction, Transformer for resampling, and finally human
SMPL(Skinned Multi-Person Linear Model) reconstruction
using a time series graph convolutional neural network.
Furthermore, in order to make the generated data closer
to the real scene, we use a trajectory optimization method
to estimate the global translation of the reconstructed hu-
man SMPL based on the accurate global 3D localization
of the point cloud. We will conduct experiments to demon-
strate the effectiveness of HSLR. This is a final paper for
deep learning courses in 2022.

1. Introduction
Humans live in a three-dimensional world, no matter

when and where, the human body will always be in constant
contact with the scenes or objects around them. Recovering
human actions from scenes is critical for understanding hu-
man behavior, human-scene interaction synthesis, and vir-
tual avatar creation. In recent years, many works have made
progress in human and scene understanding [8,9,12,19,37],
however, these datasets or methods are only aimed at the
reconstruction of human daily actions. Limited by factors
such as venue and equipment, many existing datasets can
only complete the collection of simple indoor or outdoor
scenes and simple actions. If you want to capture human
movements in large scenes that are difficult to move, such
as mountains in nature, huge rock climbing walls and other
complex scenes, the previous devices are often powerless.
In addition, most of the daily actions of the existing datasets
are in contact with the ground under natural gravity. The
interaction between the human body and the environment
is not complicated, and most of them only have contact
with the feet and other parts intermittently. The capture and
reconstruction of complex human-scene brings new chal-
lenges to today’s computer vision.

Most of the existing 3D HPE methods are limited to
monocular or multi-purpose RGB or RGBD data. RGBD
cameras add unnecessary overhead for reconstructing the
human body, and only the acquisition of depth information
is not as accurate as radar equipment. Therefore, we need to
propose a human body and scene reconstruction algorithm
based on radar point cloud, which can be robust to the 3D
reconstruction of human body and scene under the premise
of using the most simplified hardware equipment.

In order to solve the above problems, the contributions
of this work are as follows: 1. A dataset for fine-grained

reconstruction of people and scenes is proposed. 2. A
robust method for 3D human pose estimation from point
clouds is proposed.

2. Related Work

2.1. Human Pose Datasets

Recently, deep neural network-based approaches have
made significant progress in estimating the pose and shape
of human from images, video and inertial measurement
units (IMU).

As deep neural network approaches are data-driven. The
focus of human pose estimation research is partially driven
by the design of datasets. To recover 2D pose from RGB
videos, PennAction [42] and PoseTrack [1] are the two
datasets with ground-truth annotations. Kinetics-400 [4]
and InstaVariety [14] are created through 2D keypoint de-
tectors. The label provided by them is pseudo ground-truth.
SURREAL [32] provides a synthetically-generated human
pose data rendered from human motion capture data.

For 3D human pose estimation, researchers have col-
lected multiple datasets. HumanEva [29] contains 4 sub-
jects performing a set of predefined actions within indoor
scenarios, and with static background. It provides the com-
munity with synchronized motion capture and multi-view
video data. The actions in HumanEva contain walking, jog-
ging, throw/catch, gesture, boxing, etc. All these actions are
ground-base actions.

3DPW [33] is an in-the-wild 3D dataset that collected
through a set of IMU sensors and a hand-held camera. It
contains 51,000 video frames of several outdoor and indoor
activities performed by 7 actors. The activities of 3DPW
contain walking, sitting, going up-stairs, and taking bus.
The PedX [16] is pedestrian pose dataset. It consists of
5,000 pairs of stereo images and LiDAR data. It provides
3D pseudo label through a 3D model fitting algorithm.

AMASS [22] is a large-scale MoCap dataset. Spans over
300 subjects and contains 40 hours of motion sequences. It
is widely used as motion priors for pose estimation task.

The LiDARHuman26M [20] is a multi-modality dataset
which consists of LiDAR point clouds, RGB videos, and
IMU data. It records 13 actors performing 20 daily activ-
ities (e.g., walking, running, phoning, bowling) from long
distance in 2 controlled scenes. HSC4D [5] is a human-
centered 4D scene capture dataset for human pose estima-
tion and localization. It is collected by body-mounted IMU
and LiDAR through walking in 3 scenes.

Based on the discussion above, none the above datasets
contains the climbing actions, which is covered by this
work.



2.2. Pose Estimation Methods

Extensive work has focused on estimating the pose,
shape, and motion of human from pure vision-base data.

SIMPLify-X [23] compute the human pose, hand pose,
and face expression from a single monocular image.
PARE [18] address the occlusion issues through learning
body-part-guided attention mask. FuturePose [34] model
movement features using optical flow, and predict the move-
ment of skeleton human joints through a LSTM module.
GLAMR [39] estimate global human mesh with dynamic
cameras. PiFu [26] and PiFuHd [27] estimate clothed
human from RGB images using implicit representations.
ICON [35] improves them through using the SMPL pri-
ors [2]. S3 [38] represents human pose, shape, and clothing
as neural implicit function, and estimate them from a single
image or a single LiDAR sweep.

RobustFusion [30] proposes a robust human volumentric
capture system using a single RGBD camera without pre-
scanned template. EventCap [36] uses a CNN-based human
pose detection module and a optimization method to cap-
ture human motion using an event camera. LiDARCap [20]
estimate 3D human pose using LiDAR point clouds with
PointNet-based neural networks.

Human pose priors are used in pose estimation
tasks [41]. Most of them learn prior from the AMASS
dataset [22]. HMR [13] regresses human poses and shape
from RGB images in a end-to-end fashion. VIBE [17] esti-
mate human pose from RGB videos through using AMSSS
dataset as a prior. HMR and VIBE both use discrimators
to discrimate between poses from AMASS and poses es-
timated by them. VPose [24] transforms the pose space
into Gaussian spaces through variational autoencoder. Hu-
MOR [25] learns the pose change distribution based on con-
ditional variational autoencoder. Pose-NDF [31] learns a
continuous model for plausible human pose based on neu-
ral distance fields.

A few work considers human scene interactions,
PROX [10] estimates human poses with scene constraints.
POSER [11] populates scenes with realistic human poses.
LEMO [41] learns a motion smoothness prior, and consid-
ers the contacts among humans and scenes.

3. Method

In order to accurately evaluate the performance of var-
ious methods under the premise of complex actions, we
also collected the corresponding high -difficult rock climb-
ing data set and high -precision three -dimensional recon-
struction scene while proposing the HSLR algorithm. The
content of this section will be explained from data calibra-
tion and specific model details.

Figure 2. HSLR provides high-quality 3D reconstruction of RGB
point cloud scenes.

3.1. Coordinates

Coordinate Systems. We define three coordinate systems:
1) IMU coordinate system {I}: origin is at the pelvis joint
of the first SMPL model, and X/Y/Z axis is pointing to
the right/upward/forward of the human. 2) LiDAR Coor-
dinate system {L}: origin is at the center of the LiDAR,
and X/Y/Z axis is pointing to the right/forward/upward of
the LiDAR. 3) Global/World coordinate system {W}: the
scene’s coordinate we manually define. We use the right
subscript k, k ∈ Z+ to indicate the index of a frame, and
the right superscript, I or L or W (default to W ), to indicate
the coordinate system that the data belongs to. For exam-
ple, the 3D point cloud frames from LiDAR is represented
as PL = {PL

k , k ∈ Z+}
Coarse calibration. Before data capturing, the actor stands
facing or parallel to a large real-world object with a flat
face, such as a wall or a square column. His right/front/up
is regarded as the scene’s X/Y/Z axis direction, and the
midpoint of his ankles’ projection on the ground is set as
the origin. After the data are collected, we manually find
the first frame’s ground plane and the object’s plane, and
then calculate their normal vector g = [g1, g2, g3]

⊤ and
m = [m1,m2,m3]

⊤, respectively. The coarse calibration
matrix RWL from the LiDAR starting position to the world
coordinate {W} is calculated as:

RWL =


e1 e2 e3 0
m1 m2 m3 0.2
g1 g2 g3 h
0 0 0 1

 (1)

where [e1, e2, e3]
⊤ = m × g and h is the height of

the LiDAR from the ground. Based on the definition of
IMU coordinate system {I}, the coarse calibration ma-
trix RWI from {I} to {W} is defined as: RWI =[
(1, 1,−1)(2, 3, 1)(3, 2, 1)(4, 4, 1)

]
triad

3.2. Notation

We use the right subscript k, k ∈ Z+ to indicate the
index of a frame, and the right superscript, I or L or W
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Figure 3. Overview of main annotation pipeline. The blue arrows indicate data flows, and the yellow arrows represent the direction
of optimization. Dotted box: The input of each scene consists of RGB videos, point cloud sequence, IMU measurements, and 3D laser
scanning data. Data pre-processing stage calibrates and synchronizes different modalities. Solid box: The blending optimization stage
optimize including the pose and translation based on multiple constraint losses.

(default to W ), to indicate the coordinate system that the
data belongs to. For example, the 3D point cloud frames
from LiDAR is represented as PL = {PL

k , k ∈ Z+} and
the 3D scene is represented as S. MW

k indicates the k-th
frame in human motion M = (T, θ, β) in world coordinate
system, where T is the N × 3 translation parameter, θ is the
N×24×3 pose parameter, and β is the N×10 shape param-
eter. We use the Skinned Multi-Person Linear (SMPL) [21]
body model Φ to map k-th frame’s motion representation
Mk to its triangle mesh model, Vk, Fk = Φ(Mk), where
body vertices Vk ∈ R6890×3 and faces Fk ∈ R13690×3.

3.3. Reconstruction Scene

In the research of human-scene interaction, we consider
that accurate scene reconstruction is vital for the method un-
derstanding. Previous works reconstruct scenes using depth
cameras [7, 10, 40, 41] with much lower accuracy than Li-
DAR and cannot check large scenes. HSLR uses Trimble
X7 to scan 3D scene information and rebuild the precisely
measured scene in space. We provide 7 high-precision re-
construction scenes with a total point cloud amount of 40M,
as shown in Fig. 2.

3.4. Blending Optimization Loss

We utilize scene and physical constraints to perform a
blending optimization of pose and translation to obtain ac-
curate and scene-natural human motion MW annotation.
The following constraints are used: the limb contact con-
straint Lct encourages reasonable hand and foot contact
with the scene mesh without penetrating. The limb slid-
ing constraint Lsld eliminates the unreasonable slippage of
the limbs during climbing. The smoothness constraint Lsmt

makes the translation, orientation, and joints remain tempo-
ral continuity. The mesh to point constraints Lm2p mini-
mizing the distance between constructed SMPL vertices to
the point clouds of human body. As shown in 3

The optimization is expressed as:

L = λctLct + λsldLsld + Lsmt + λm2pLm2p

M = argmin
M

L(M |TW , θI , RW ,S)
(2)

where λct, λsld, λsmt, λm2p are coefficients of loss terms.
L is minimized with a gradient descent algorithm that opti-
mize MW = (T, θ). MW is initialized according to Paper
Sec 3.3.
Limb contact Loss. This loss is defined as the distance



from a stable foot or hand to its nearest neighbor in the
scene vertices. First, we detect the foot and hand state based
on its movements. The movement is calculated based on
the set of vertices of hands and feet. One limb is marked
as stable if its movement is smaller than 3cm and smaller
than another limb (foot or hand)’s movement. We obtain the
contact environment near the stable limb through a neighbor
search. The limb contact loss is Lct = Lctfeet

+ Lcthand
.

Lctfeet
=

1

l

l−1∑
j=1

∑
v∈V FSFj

1

|V FSFj |
∥vf − ṽf · pfj∥2 (3)

Lcthand
=

1

l

l−1∑
i=1

∑
v∈V HSHi

1

|V HSHi |
∥vh − ṽh · phi∥2

(4)

where ṽf and ṽh is homogeneous coordinate of vf and vh.
V FSFj and V HSHi are the sets of the vertices of a stable
foot SF j and a stable hand SHi. The loss is average over
all frames of a sequence with length l.
Limb sliding Loss. This loss reduces the motion’s sliding
on the contact surfaces, making the motion more natural
and smooth. The sliding loss is defined as the distance of
a stable limb over every two successive frames: Lsld =
Lsldfeet

+ Lsldhands
.

Lsldfeet
=

1

l

l−1∑
j=1

∥E(V FSFj+1)− E(V FSFj )∥2 (5)

Lsldhands
=

1

l

l−1∑
i=1

∥E(V HSHi+1)− E(V HSHi)∥2 (6)

where E(·) calculates the center of the vertices list.
Smooth Loss. The smooth loss includes the translation
term Ltrans and the joints term Ljoints.

Lsmt = λtransLtrans + λjointsLjoints (7)

The Ltrans smooths the trajectory T of human (the trans-
lation of the pelvis) through minimizing the difference be-
tween LiDAR and a human’s translation difference. The
smooth term is as follows:

Ltrans =
1

l

l−1∑
j=1

max(0, ∥TL
j+1 − TL

j ∥2 − ∥Tj+1 − Tj∥2)

(8)

where TL
k is the translation of LiDAR at k-th frame, and Tk

is the translation we optimized for. The Ljoints is the term

Constraint term Scene

Lcont Lsmt Lm2p Vertical 1 Vertical 2 Horizontal 1 Horizontal 2

% % % 48.28 60.04 59.83 47.74
! ! % 22.64 28.33 41.67 26.64
! % ! 33.48 40.44 44.77 31.44
% ! ! 24.64 38.37 42.07 30.08

! ! ! 16.24 23.46 34.34 20.21

Table 1. Loss of the optimization stage for different constraints

that smooths the motion of body joints in global 3D space,
which minimizes the mean acceleration of the joints. For
this loss, we only consider stable joints on the torso and the
neck. Let δsj = Js

j − Js
j−1 represent the difference of joints

between consecutive frame. Ljoints is defined as follows.

Ljoints =
1

l

l−1∑
j=1

∥δsj+1 − δsj∥2 (9)

Since the static scenes are collected in Paper Sec 3.1,
we design a method to segment human point clouds as an-
notation data. For each frame of dynamic LiDAR output,
we manually register to the same coordinate system of the
IMU to obtain the RT matrix. Next, the human body in the
multi-frame dynamic scene is manually removed to gener-
ate a sparse static scene. For each frame of point cloud,
the points within the threshold range of the sparse scene are
eliminated to obtain the segmented human point cloud Pi.
For each segmented human point cloud Pi.
Mesh to point loss. For each estimated human meshes, we
use Hidden Points Removal (HPR) [15] to remove the in-
visible mesh vertices from the perspective of LiDAR. Then,
we use Iterative closest point (ICP) [28] to register the visi-
ble vertices to P , which is segmented human point clouds.
We re-project the human body mesh in the LiDAR coordi-
nate to select the visible human body vertices V ′. For each
frame, We use Lm2p to minimize the 3D Chamfer distance
between human points Pi and vertices V ′

i. More details
about loss terms definition are given in the appendix. For
each frame, the Lm2p constraint is regularized with the fol-
lowing equation:

Lm2p =
1

|P|
∑
pi∈P

min
vi∈V ′

∥pi − vi∥22 +

1

|V ′|
∑

vi∈V ′

min
pi∈P

∥vi − pi∥22
(10)

3.5. Quantitative evaluation.

To understand the impact of different constraints used in
the optimization stage, we conduct ablation study of 3 dif-
ferent constraints: Lcont, Lsmt and Lm2p. Tab. 1 shows
the loss of using different combinations of constraints for
motions from 4 scenes. The loss is an indicator of viola-
tion of motion constraints. Without using any term, the loss



Figure 4. Qualitative results of several algorithms on the HSLR dataset. It is challenging to reconstruct a climbing pose with high ductility,
even if algorithms are re-trained (marked by ⋆) or fine-tuned (marked by ⋄) based on HSLR. As indicated by the red circles, all these
methods have artifacts for limbs. As a scene-aware method, PROX performs better than other methods that do not use scene constraints.
This suggests that it is necessary to consider the human-scene interaction annotation provided in HSLR.

is largest, which suggests that motions may seem unnatu-
ral. The Lct and Lsmt terms can reduce total loss, which
indicates that they can improve the overall quality of data.
Combing Lm2p can further improve the quality of motions.
Overall, all constraint terms are necessary to produce accu-
rate and smooth human pose and translation.

4. Experiment

Evaluation metrics In this section, we report Procrustes-
Aligned Mean Per Joint Position Error (PMPJPE), Mean
Per Joint Position Error (MPJPE), Percentage of Correct
Keypoints (PCK), Per Vertex Error (PVE), and Accelera-
tion error(m/s2) (ACCEL). Except ACCEL, error metrics
are measured in millimeters.

Pose Estimation In this task, the poses of climbing hu-
mans are estimated from RGB imagery or LiDAR point
clouds based on the HSLR dataset. For the methods eval-
uated in this section, VIBE [17] estimate poses from RGB
images, while LiDARCap and P4Transformer [6] recover
the motions from point clouds. The qualitative results of
pose estimation are depicted in Fig. 4. As it is pointed
out by the red circles in this figure, all these methods have
artifacts. The quantitative results are depicted in Tab. 2.
The pretrained model of LiDARCap does not perform well
(PCK0.5= 0.46) on HSLR. Further, we train LiDARCap
and P4Transformer from scratch based on HSLR. Com-
pared with the indicators of the original paper, their per-
formance is also not satisfactory. The RGB-based approach
(VIBE) does not perform well on this dataset too. After

Input Method ACCEL↓ PMPJPE↓ MPJPE↓ PVE↓ PCK0.5↑

LiDAR
LiDARCap 12.39 222.11 358.13 422.65 0.50
LiDARCap⋆ 2.59 86.38 115.93 136.83 0.90

P4Transformer⋆ 3.32 100.58 130.99 156.27 0.87

RGB

VIBE 68.02 770.77 287.14 857.83 0.17
VIBE⋄ 57.88 161.21 116.78 187.70 0.76
MAED 33.61 135.57 472.82 515.46 0.25

MAED⋄ 17.50 135.57 170.43 197.66 0.74

Scene PROX - 109.34 265.34 279.50 0.53
PROX⋄ - 109.33 147.41 165.12 0.79

LiDAR&Scene HSLR(Ours) 0.62 80.73 70.06 94.84 0.95

Table 2. Comparison of pose estimation by SOTA on different
modal data. ⋆ indicates training based on the HSLR dataset. ⋄
denotes fine-tuned based on the HSLR dataset. Other experiments
used the pretrained model of the original method.

fine-tuning on CIME4D, the performance of VIBE is im-
proved. However, the performance is still poor compared to
the original paper. Overall, the error metrics for all these
methods are high. This indicates that HSLR is a chal-
lengding dataset for human pose estimation.

Pose Estimation with Scene Constraints PROX [10] is
the most frequently used dataset for estimating the human
body in the Scene currently. However, because most of the
motion in PROX are daily movements, such as walking,
standing and sitting, there are no complex and high stretch
actions. In this task, we choose PROX estimates human
poses from RGB images with 3D scene constraints. PROX
obtains human skeleton information from monocular RGB
images using openpose [3]. We convert the mesh scene pro-
vided by HSLR into sdf form to test PROX. Due to the inac-
curate positioning of PROX in 3D space, we use HSLR fine-



tunes PROX to focus on estimating human poses. Tab. 2
shows in the quantitative evaluation results, and Fig. 4 is
a qualitative comparison. We observe that due to the de-
fects of RGB images, when the color of the background is
similar to the texture and the clothes of the volunteers, the
current state-of-the-art 2D joint point detection algorithm
cannot detect the human skeleton in rock climbing well.
We fine-tune PROX, but the results show that in the HSLR
scene, the human joints reconstructed by PROX have seri-
ous deviations, and the movements of the volunteers are not
correctly restored.

From the experimental results of qualitative and quan-
titative analysis, we can observe that we propose that the
HSLR method has the most advanced performance than
SOTA, and the entire action has the highest degree of re-
duction and the smoothest. It can be seen from the results
of the analysis matrix that compared to LiDARCap and pure
Point4Transformaer, our PVE indicator exceeded the 100
mark for the first time. In the result of visualization, com-
pared with other comparison methods, the HSLR proposed
by our proposal can accurately estimate the position of the
bone point, and the hand point and foot point at the end of
the limb can be relatively accurate.

5. Conclusion
This work proposes a point cloud-based human pose es-

timation method, which uses additionally collected high-
precision scene data to estimate more accurate pose and tra-
jectory. Ablation experiments demonstrate the benefits of
multiple optimizations in the HSLR approach. In the quali-
tative and quantitative experiments, compared with the cur-
rent SOTA method based on point cloud and RGB, it can
be seen from multiple scenes and actions that our proposed
method has the best effect, and can accurately restore the
movement details of the extremities.
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