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Abstract

Bacteriophages/Phages are viruses that infect bacteria
and archaea and are key players in the microbial com-
munity. But in natural communities, the existence of a
large number of phage-virus associations is not gener-
ally known. To understand their regulatory roles in var-
ious ecosystems and to harness the potential of bacte-
riophages for use in therapy, more knowledge of phage-
host association is required. Therefore, characterizing
phages-prokaryotic association is a critical component
to understanding how biological systems work. Tradi-
tionally, virus research has used culture-based isolation
techniques that provide direct identification of phage-
host association. However, identifying the association
between phage and prokaryotic based on traditional
methods is time-consuming and labor-intensive. With
the advent of metagenomic sequencing technologies,
a large number of computational methods have been
developed to infer the hosts of new viruses. Despite
some promising results, computational host prediction
remains a challenge because of the limited known in-
teractions. In this work, we propose a method called
IGNITE using Transformer and multi-layer perceptron
(MLP) to predict phage-host association. First, we use
a state-of-the-art natural language processing (NLP)
model, the transformer, to extract features from phage.
Then, IGNITE learns the feature representation of the
host through a two-layer neural network. Finally, IG-
NITE uses a three-layer perceptron as a decoder to cal-
culate the relative likelihood of phage and host.

Introduction

Viruses are the most abundant and highly diverse biolog-
ical entities on Earth (Breitbart and Rohwer 2005)(Breit-
bart et al. 2002). Prokaryotic viruses which include phages
and archaeal viruses play an important role in balancing the
global ecosystem by regulating the composition of bacteria
and archaea in water and soil (Ahlgren et al. 2017)(Lu et al.
2021)(Gregory et al. 2019). Viruses that infect bacteria re-
ferred as bacteriophages or phages in short have played es-
sential rules in natural environments, they directly influence
gut health and are associated with several human diseases,
such as diabetes and Crohn’s disease.
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Researchers discovered antibiotics in 1928 and have since
used them in clinical practice to treat serious bacterial dis-
eases and save countless lives. However, because bacteria
are highly adaptable, they can rapidly evolve resistance to
new antibiotics, which will significantly reduce the effec-
tiveness of the drug. Currently, phage therapy is a promising
approach that uses viruses to infect and kill bacteria. Upon
phages’ recognition of specific types of receptors on the bac-
terial surface, they inject their DNA into the bacteria, result-
ing in replication, generation of additional phages, and pro-
duction of an enzyme that dissolved the outer bacterial cell
membrane to release the generated phages (Burstein et al.
2016)(Zhang et al. 2017)(Guerin et al. 2018). Therefore, a
fundamental step in using phages to treat bacterial infection
is to identify the hosts of phages, which will provide the key
knowledge of using phages as potential antibiotics. Besides
phage therapy, identifying the hosts of the novel phages have
other applications such as gene transfer search, disease diag-
nosis, and novel bacterial detection. Currently, the method
for determining the viral host is either to culture the virus
which is low-throughput, time-consuming, and expensive,
or to computationally predict the viral hosts which needs im-
provements at both accuracy and usability.

There are two major challenges for computational host
prediction (Liu et al. 2019). The first one is the lack of
known virus—host interactions. For example, the number of
known interactions dated up to 2020 only accounted for 0.4
(1940) of the prokaryotic viruses at the NCBI RefSeq at that
time. Meanwhile, among the 60 105 prokaryotic genomes
at the NCBI RefSeq, only 223 of them have annotated in-
teractions with the 1940 viruses. The limited known inter-
actions require carefully designed models or algorithms for
host prediction. Second, although sequence similarity be-
tween viruses and hosts is an insightful feature for host pre-
diction, not all viruses share common regions with their host
genomes. For example, in the RefSeq database, “0.24 viruses
do not have significant alignments with their hosts. There-
fore, a new prediction method is needed to calculate virus-
host interactions.

In recent years, deep learning technology has received
extensive attention in the field of bioinformatics, and re-
searchers have applied such techniques to handle different
tasks. Therefore, in this course assignment, our group plans
to use deep learning-based methods to predict phgae-host



association.

Related works

This section surveys the latest literature on predicting bac-
teriophage host association on basis of learning methods.
Compared with alignment-based methods, learning-based
methods are more flexible at predicting virus-host inter-
actions for newly identified viruses. For example, several
learning-based methods utilizes k-mer features for predic-
tion. VirHostMatcher (VHM) utilized k-mer based oligonu-
cleotide frequency (ONF) to predict the host of a selected
virus by the greatest ONF similarity (Ahlgren et al. 2017).
Galiez et al. then developed a homogenous Markov model
called WIsH. They computed the likelihood of contigs and
predicted de novo the host with the highest likelihood for
virus host prediction and acquired higher accuracy and faster
run-time compared with VHM (Galiez et al. 2017). PHP,
a Gaussian model, was implemented using the differences
of k-mer frequencies as features. It inferred the virus’ la-
bel based on the highest probability from learned Gaussian
distribution and gave a host prediction accuracy of 34% on
VHM data set (Lu et al. 2021). VirHostMatcher-Net (VHM-
net) was an advanced version of VirHostMatcher, which
employed Markov random field framework while integrat-
ing CRISPR, alignment-free similarity measures. VHM-net
got 59% and 86% accuracy at genus and phylum levels on
1462 known virus-host interaction pairs, respectively (Wang
et al. 2020). Leite et al. utilized the primary protein struc-
ture sequences of bacteriophages and host and constructed
several traditional machine learning models, including k-
nearest neighbor (KNN), RF, SVM, and artificial neural
network (ANN) to predict phage host association (Leite et
al. 2018a)(Leite et al. 2018b). In Leite’s method, negative
pairs were randomly selected from the putative negative set,
which may cause bias.

Latest learning-based method, mainly deep learning mod-
els, has achieved better performance and are capable of pre-
dicting association at finer classifications, such as species
level prediction. For instance, VHULK models host predic-
tion as a multi-class classification issue with prokaryotes
serving as the labels and viruses serving as the inputs. It
constructed a multi-layer perceptron model in which pre-
dicted protein sequences generated by genome sequences
are searched against pVOGs database and help make pre-
dictions (Amgarten et al. 2020). Li et al. developed PredPHI
for phage-host interaction prediction based on a deep convo-
lution neural network. They collected protein sequence data
and extracted features AAC and AC representing protein-
related information to construct the model. Specially, Pred-
PHI K-Means clustered the negative pairs to generate neg-
ative samples in training set and had 0.69 accuracy on
test set.(Li et al. 2020) Similar to PredPHI, DeepHost also
trained a CNN model for host prediction but based on
genome. DeepHost encoded phage genomes into 3D matri-
ces and applied spaced k-mers, which tolerates SNPs and
InDels. DeepHost can achieve good performance, but only
when predicting genomes within hits in BLAST.(Ruohan et
al. 2022) Shang et al. presented HostG, a semi-supervised
model to predict the hosts of prokaryotic viruses. They con-

structed a knowledge graph depicting virus-virus and virus-
host similarity and applied graph convolution network for
GCN learning. (Shang and Sun 2021)

Though learning methods have made great progress in
predicting bacteriophage host association, there are still
some remaining problems. First of all, although some
BLAST-based methods can predict some reliable associ-
ations, as the data increases, the computational complex-
ity will increase exponentially. Second, the lack of positive
samples makes the training process difficult. Only a limited
number of positive phage-host association pairs identified in
the database were available for model training. The above
studies most employ DNA sequences or protein sequences
related features as model inputs. How to reasonably select
the features of bacteriophages and hosts is another major is-
sue.

Proposed Solution

In this paper, we regard the host prediction task as a link
prediction task, where phage and host are encoded by differ-
ent models, respectively. To be specific, For phages, we em-
ploy a state-of-the-art text embedding model, Transformer,
to automatically learn feature representations from the lan-
guage” of phages. At the same time, the kmer method is
used to obtain the embedding from the host, and then a two-
layer multi-layer perceptron (MLP) is used to learn the fea-
ture representation of the host. Then the link prediction task
can be defined as: given a phage embedding pi and a bacte-
ria embedding bi, what is the probability of pi and bi having
a link (infection). In the following section, We will first in-
troduce how to translate the phage genome into protein sen-
tences based on each phage. Then, the structure of IGNITE
will be described in detail. A schematic diagram of IGNITE
is shown in Figure 1.

Encoding into protein-based sentences

In the process of encoding phage, each token is derived from
a protein cluster, which contains homologous protein se-
quences from genome phages. We construct protein clus-
ters from genomic data from phage, where gene finding
and protein translation are used on the downloaded DNA
genomes. A recent study found that Prodigal is the best
tool for identifying genes in viruses, particularly phages
(Gonzilez-Tortuero et al. 2021). Therefore, we used Prodi-
gal to predict open reading frames in our training and test
genome data using the default settings. Afterwards, we per-
formed all-against-all DIAMOND BLASTP (Buchfink, Xie,
and Huson 2015) on the predicted proteins and created a pro-
tein similarity network using protein pairs with an E-value
of 1e-3 or lower. In this network, the proteins are represented
as nodes and the alignments are represented as edges, with
the edge weight indicating the E-value of the corresponding
alignment. Finally, we used the Markov clustering algorithm
(MKL) (Enright, Van Dongen, and Ouzounis 2002)with de-
fault parameters to group similar proteins into clusters, dis-
carding any clusters containing fewer than two proteins. The
process of constructing protein clusters is shown in Figure 2.
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Figure 1: An overview of IGNITE.

Embedding,

Embedding,

We will use the generated protein clusters as tokens in
our vocabulary to represent phages as sentences. We will
also record the identification number of each token (protein
cluster) and its position in the query sequence, as shown in
Figure 1. Since the genome lengths of different phages are
different, the resulting protein-based sentences are also of
different lengths. We adhere to the guidelines outlined in the
Transformer paper (Oliver et al. 2018) and limit the maxi-
mum length of a sentence to 300. If a sequence has more
than 300 protein clusters, we only consider the first 300. For
sequences with less than 300 tokens, we add zeros to the
end of the sentence. Then, we create a 300-dimensional vec-
tor for the input sequence, where each dimension represents
a unique token ID.

The Transformer model

Two main components in Transformer contribute to these
aims: (1) the embedding layers and (2) the self-attention
mechanism. As shown in Figure 3, the process of embedding
the sentence and token positions for the Transformer block
involves two layers: the protein-cluster embedding layer and
the positional embedding layer. The protein-cluster embed-
ding layer, similar to a lookup table, converts the input token

into a numerical vector. However, due to the large size of the
vocabulary (45,577), using one-hot encoding can result in
sparse vectors, which can negatively impact the model’s per-
formance. To avoid this issue, we utilize a fully connected
layer to conduct linear projection and generate a lower-
dimensional embedding vector for each token. This FC layer
acts as a learnable dictionary, mapping an ID of a token to
its corresponding embedding vector. The model architecture
of the transformer is shown in Figure 4.

Because Transformer contains no recurrence or convolu-
tion, it uses the positional embedding to encode the position
information. In the model, we obtain the feature representa-
tion of the embedding layer as follows:

I, =FC(I;,Wrs)
{ IPZFC(IvaIp) (D
X=IL+1,

Which I is the input sentence and I, is the position in-
dex vector for the input tokens. W;s € RN*¢mbed and
Wi, € Rlen+embed gre the learnable parameters of the look-
up table for protein-cluster embedding and positional em-
bedding, respectively. IV is the number of protein clusters,
which is 45 577 in our model, and len is the maximum length
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Figure 2: Converting inputs into protein-token sentences

of the sentence, which is 300 by default. embed is a hyper-
paramter of the embedding dimension and it is set to 512 by
default following the guideline in (Oliver et al. 2018). Then,
X will be fed into the Transformer block. Ideally, these em-
bedding layers will capture some of the semantics of the in-
put by placing semantically similar tokens close together in
the embedding space.

After embedding the sentences, each token is converted
into a vector of size 512 and the embedded sentences will
be a R309%512 matrix. Then, we feed the matrix into the
self-attention mechanism. We want to train a model to learn:
given a set of proteins (query), which proteins (key) are usu-
ally co-present in phage genomes (value).

— QKT

= SoftMazx( e 4 )
Eqn.2 show how the self-attention mechanism works. First,
the embedded matrix X is projected by three FC layers into
Q, K and V, respectively. Because the attention matrix only
contains pairwise protein cluster information, to model dif-

Attention(Q, K, v)

Embedding
] Embedding T .
X s/v ® v\p
PICIN & &
t f

[ Positional ][Protein-cluste

2
Embedding Embedding ] Sentence  [3][2][N] ~[0][o][o]

t

Contigs (sentences)

Position Index |1 /2|3 208 (299300
Figure 3: Converting inputs into protein-token sentences

ferent combinations of pairwise relationships, we use h FC
layer groups for linear projections. Each group is called a
head (head;), and on each of these projected versions of
queries @;, keys K; and values V;, we can perform the self-
attention mechanism in parallel. To reduce computational
complexity, in each FC layer we will reduce the dimension
for the projected features. The dimension of the output will
be lend, where ds is calculated by embed/h. In this work,
we choose h = 8 by default. Thus, the formula of each head
attention can be written as in Eqn.3.

headi; = Attention (Q;, K;, V;)

Qi = FC (X, W7)

K, =FC (X,W}K)

Vi =FC (X,W))
The parameters in the FC layers are projections matrices:
W& e RNxds WK ¢ RNxdsqndWY e RN*9sFinally,
we will concatenate the output from each head and form the

final output of the multi-head attention block as shown in
Eqn. 4, where W© g Rhdsxembed,

3)

MultiHead(Q, K, V) = 4
FC (Concat (heads, . . ., heady,) , W°) “)

Finally, we feed the output of the multi-head attention
block to a two-layer neural network. The output of the neural
network is the final feature representation for each phage.

Feature representation for prokaryotic

Because the genome sequence of bacteria is much larger
than that of phage. Therefore, for the feature representation
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Figure 4: The model architecture of the transformer
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Figure 5: The classification accuracy of the training set

of prokaryotes, we first use kmer to obtain the initial features
of prokaryotes, and then use two layers of fully connected
layers to learn the initial features of hosts to obtain the final
feature representation of each prokaryote.

Decoder for link prediction

After obtaining the characterization of the phage and host,
we apply a three-layer neural network classifier to decode
the embedded vectors outputted from the encoder. This de-
coder aims to judge how likely these query pairs form actual
infections. Thus, the input of the decoder is a query set Q,
and the output of the decoder is a probability score. Each el-
ement in Q is called a query vector ¢;7 and is calculated by
Eq.5.

¢ij = encoder (p;) — encoder (h;) Q)

First, we generate all-against-all virus—prokaryote pairs
and calculate all query vectors g;; € (). Then we employ
a two-layer neural network to decode the feature vector for
each input ¢;; as shown in Eq.6.

(+1) (@) pa

0™ =0 (d0") ©)
. . (L-1)

decoder (g;j) = sigmoid (qij )

which decoder(-) represents the output of the link prediction
decoder.Because the activation function of the output layer
is the sigmoid function, decoder(-) can be used as the prob-
ability score for each pair.

Model training

Research shows that end-to-end learning can effectively im-
prove the learning efficiency of the model. Therefore, our
overall trainable parameters of IGNITE optimized by back-
propagation loss. The trainable parameters of IGNITE are:
(i) The weights of the Transformer and the two-layer per-
ceptron during the encoding process and (ii) query param-
eter matrices in the decoder. There are two kinds of query
pairs that will be generated by Eq. 5: positive pairs and neg-
ative pairs. Positive pairs represent known virus—prokaryote
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Figure 6: The classification accuracy of the test set

interactions given by the dataset. Negative pairs represent
the pairs with no evidence for interaction. The training loss
of the model is defined as follows:

J(i,j) = —log P¥ — Eypp, log (1 — P;k)

(7)
During the training process, we optimize the model using the
crossentropy loss as shown in Eq. 7. Because we form all-
against-all query pairs from all viruses and hosts, the number
of negative query pairs will be much larger than the positive
query pairs. To solve this problem, rather than sampling a
subset of the negative pairs, we optimize the model through
negative sampling.

Experiment

In this experiment, we ulitized the benchmark dataset (the
VHM dataset) introduced in (Lu et al. 2021) comprising
1940 viruses and 206 hosts. We download all 1940 viruses
from the NCBI RefSeq database and separate the training set
and test set according to their submission time (before and
after 2015). Thus, we have 1306 positive pairs for training
and 634 positive pairs for testing, respectively. Although ev-
ery virus is unique, some of them infect the same host. Dur-
ing the training phase, each phage together with its known
host, were treated as a positive phage-host pair, while the
selection of a negative pair is achieved by combining this
known host and random screening of one phage that does not
actually interact with the host. Here, we trained our model
IGNITE, evaluated our experimental results and compared
our model against other 9 virus-host interaction prediction
tools in terms of training accuracy and test accuracy over
distinctive taxonomic levels (from species to phylum). Dur-
ing training process, we optimized several trainable param-
eters. Figure 5 and Figure 6 respectively show the classifi-
cation accuracy of the training set and test set of the model
at the Family level, which are recorded by the tensorboard
module.

In experiment, we first trained our model and evaluated
model performance over distinctive taxonomic levels from
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species to phylum on training dataset (shown in figure 7).
Given the protein sequence of each virus, the model returns
the prediction score of each bacteria, making the host pre-
diction with the highest prediction score. Figure 7 shows that
our model achieved promising accuracy on training dataset,
especially with an accuracy of 0.89 on species level host pre-
diction.

To further validate the robustness of our model IGNITE,
we settled the parameters and applied the trained model to
the test dataset for host prediction of unseen data. As shown
in figure 8, our model almost outperformed 9 other models
on the test virus host prediction over distinctive taxonomic
levels. IGNITE achieved an accuracy of 0.49 on species
level host prediction, accomplishing an improvement of 6
percent compared with the benchmark model VHM-net.

Conclusion

Recently, conventional antibiotic therapy has struggled to
perform well in the treatment of bacterial infections due to
the rapid development of bacterial resistance to antibiotics.
In contrast, phage therapy is considered to be a promising
treatment approach because of its unique ability to target and
kill bacteria. Yet few phage-bacteria interactions are known,
and verifying phage-bacteria interactions through extensive
experiments is time and money consuming, thus is not fea-
sible. Researchers have developed a series of host predic-
tion methods, but as shown in figure 8, have not achieved
high accuracy. In the current study, we implemented IG-
NITE, a deep-learning model for precise virus-host inter-
action prediction that utilized transformer combined with
multi-layer perceptron for high-dimensional feature deriva-
tion from protein sequences of phages and and DNA se-
quences of hosts, followed by a decoder for binary classi-
fication. Utilizing self attention mechanism in transformer
renders evaluation of importance and association of virus
protein clusters, which helps distinguish the characterization
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Figure 8: The comparison of the results of our method other
9 models

of different viruses. Moreover, by concatenating the embed-
ding of hosts and randomly selected viruses to form a neg-
ative set, the model witnesses a variety of virus-prokaryote
combinations, which in turn results in a stronger ability to
discern real interaction patterns. Our experimental results
revealed that IGNITE achieved performance comparable to
the state-of-the-art methods at genus level and beyond, out-
performed 9 existing virus-host interaction prediction tools
at species level host prediction and improved species level
prediction accuracy on benchmark dataset by 6 percent.
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