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Abstract
Kinship verification based on face images is an important
subfield of face image analysis. It is valuable in many prac-
tical applications, such as smuggling children investigation
and criminal tracking. Traditional kinship verification meth-
ods usually only use hand-craft face features. However, these
methods often fail to make good use of the deep information
hidden in the face image. In recent years, with the rapid devel-
opment of deep learning, various kinship verification models,
which are all based on convolutional neural networks, have
been proposed. These models can extract the deep-level and
more abstract features of face images, but most of them di-
rectly ignore the shallow features of face such as edge and
texture features.Aiming at the shortcomings of traditional
hand-craft features and the latest deep learning based kinship
verification methods, we propose a multi-level feature knowl-
edge mining model (HF2KM2) for kinship verification. By
introducing the hand-craft feature regression module and the
self-attention module, and adopting the feature fusion strat-
egy in the feature extraction part, the model considers both
the shallow geometric features and the deep semantic features
of the face, and excavates the more discriminative multi-level
features in the face image. Experiments show that the model
has improved the recognition accuracy.

Introduction
In the past few decades, with the rapid development of deep
learning, face image analysis has become a research hotspot
and an active research field in the field of computer vision
and biometric recognition. Many facial analysis tasks have
been well studied and achieved remarkable success, espe-
cially in facial recognition(Taigman et al. 2014), facial veri-
fication(Chen, Patel, and Chellappa 2016), facial expression
analysis(Yang et al. 2018), etc.

In recent years, experimental studies by some biologists
and psychologists have also shown that genes have heri-
tability and similarity. Individual genes are inherited from
parents, and faces can be used as the embodiment of the ge-
netic similarity of different individuals in the same family
tree(DeBruine et al. 2009). These findings provide strong
theoretical support for kinship verification based on face im-
ages, so it becomes an important sub-field of face image
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analysis. Affinity identification is valuable in many practi-
cal applications, such as searching for lost children(Deb et
al. 2019), social network analysis(Qin et al. 2015), and crim-
inal tracking(Jain et al. 2012), which can help the police, the
Ministry of Justice, social scientists, and the masses. Com-
pared with face recognition and verification, it is more chal-
lenging to identify kinship through face images. The exist-
ing research results show that the relevant face recognition
algorithms and models achieve 99.15% higher accuracy than
people in the recognition performance of a single face(Sun
et al. 2014)but still face many problems in the processing of
kinship recognition tasks, because the face images of peo-
ple with parent-child relationships may have high genetic
appearance variation due to age, gender, environment, and
other complex reasons.

In this paper, we will summarize the methods and pro-
cesses of kinship recognition tasks, and propose a kinship
recognition model based on manually designed feature re-
gression and multi-level feature fusion (HF2KM2). Under-
stand and learn the characteristics of typical manual design
features of images, as well as the principles of convolu-
tional neural network and self-attention mechanism, and an-
alyze the advantages and disadvantages of these technolo-
gies. Collect the data set related to kinship recognition and
preprocess it. Carry out a large number of comparative ex-
periments on the same data set between the model proposed
in this paper and other excellent models related to kinship
recognition, and analyze the results. Ablation experiments
were carried out on the proposed model to verify the ratio-
nality of the model.

Related work
In recent decades, many algorithms have been proposed for
facial image-based kinship verification. Most existing works
can be divided into two categories: feature-based approaches
and metric-based approaches.

Feature-based Kinship Verification
The feature-based approaches focus on developing the dis-
criminative facial feature. The early works often utilize the
hand-crafted features, such as Histogram of Oriented Gra-
dient (HOG), Local Binary Pattern (LBP), Scale-Invariant
Feature Transform (SIFT), Gabor Wavelet and their variants,



to better capture the low-level geometric, color, textual facial
characteristics for kinship verification.

Recently, there has been a growing trend for researchers to
use the learning-based feature, particularly the deep learning
features inspired by the remarkable success in deep learning.
For example, Dehshibi et al.(Dehshibi et al. 2019)present a
kernelized bidirectional PCA conjunct with the cubic norm
for learning discriminative feature space for kinship ver-
ification. Regarding the deep learning feature, Zhang et
al.(Zhang et al. 2015)utilize Convolutional Neural Networks
(CNN) for feature learning and achieved impressive verifi-
cation performance.

Integrating multi-features or multi-level features is also
a common strategy for kinship verification. In deep learn-
ing, exploiting multi-level features is also a common way
for performance improvement. Such strategies have been
extensively proven its effectiveness in many computer vi-
sion tasks, since it is well-known that feature maps from
shallower layers encode low-level geometric details while
the ones from deeper layers encode the spatial information,
which can be further exploited for better outlining the struc-
ture. A very recent kinship verification work uses two con-
volutional neural networks that share parameters to extract
different scales of deep features and are expected to pro-
vide global contextual information of face images(Yan et
al. 2021). Inspired by these advances, our work also adopts
multi-level deep features for presenting a better facial image
representation.

Metric-based Kinship Verification
After feature extraction, the follow-up step needs to learn a
discriminative metric for distinguishing whether the given
two facial images have a kin relationship. In the recent
decade, a large number of metric-based approaches have
been developed. Lu et al.(Lu et al. 2013)proposed a Neigh-
borhood Repulsed Metric Learning (NRML) method to
learn a distance metric that can pull the pairs with kin re-
lation close while pushing those without kin relation away
simultaneously. Zhou et al.(Zhou et al. 2016)present an en-
semble metric learning method, which utilizes a sparse bi-
linear similarity function to delineate the relative character-
istics of kin samples.

The majority of these previous methods learn the linear
mappings or its kernelized version from the feature space
to the metric space. however, such mappings are essen-
tially nonlinear. Deep learning is a well-known technique for
learning complex nonlinear relationships. In kin verification,
many researchers have worked in this direction. For exam-
ple, Deep Discriminative Metric Learning (DDML) aims at
learning a set of hierarchical nonlinear transformations to
project face pairs into the same latent feature space, under
which the distance of each positive pair is reduced and that
of each negative pair is enlarged(Lu et al. 2017). The main
merit of the deep metric learning methods is that they can be
trained in an end-to-end manner, in which feature learning
and metric learning are jointly optimized.

In verification tasks, the cross-pair information is very
useful to enlarge the margin between the positive samples
and negative samples. The most influential approach should

be the triplet loss, which has been widely successfully ap-
plied to dozens of supervised learning tasks(Hermans et al.
2017). However, only a few kinship verification approaches
have been explored in this direction, and all of them just di-
rectly apply the triplet loss for learning the discriminative
metric space. In(Yu et al. 2020), two deep Siamese networks
are integrated into a deep triplet network for tri-subject kin-
ship verification. Kinnet adopts a soft triplet loss to further
learn a nonlinear metric space where related pairs distribute
closely and unrelated pairs distribute remotely in the fine-
tuning phase(Li et al. 2017).

Although the triplet loss is a powerful deep metric learn-
ing technique, some studies still show that it suffers from
the weak generalization ability to the test set and the slow
convergence due to the reason that only one negative pair is
considered in each update(Laiadi et al. 2020). We mitigate
these issues via generalizing the triplet loss, which allows
the positive example to compare with multiple negative ex-
amples. Moreover, our work also adaptively highlights the
hard-negative examples via considering their learned rela-
tion scores as the metric weights for better optimizing the
model.

Method
Overall architecture
Here, we present a novel end-to-end deep learning model
named HF2KM2 for kinship verifification. The model is
mainly composed of two parts, namely feature extraction
part and metric network part, which correspond to feature
learning and metric learning steps respectively. In this pa-
per, Γζ(·) and θϕ(·) are used to represent the feature extrac-
tor and metric network respectively, where ζ and ϕ are the
parameters in the corresponding network. A pair of facial
images are fed into the feature extractor, learn the corre-
sponding face features, and then input the obtained features
into the metric network to verify whether there is a kinship
between the face images.

Figure 1: The overall architecture of HF2KM2.

Feature extraction
In the feature extraction part, we uses a lightweight four
layer convolutional neural network (CNN) as the backbone
network of feature learning. It is worth noting that this paper



can also use other more classic CNN models as the backbone
network of feature learning. However, the following experi-
mental results show that the performance of this lightweight
four layer CNN network is better than VGGNet and ResNet.
This is because the parameters of the above two networks are
too many, and the data used to train the model’s kinship veri-
fication dataset is too small, which makes the model training
very easy to fall into over fitting.

Manually design feature regression module. HF2KM2

adds a manually designed feature regression module to the
backbone network of the feature extraction part. It uses the
HOG feature and LBP feature of the face image to perform
linear regression on the features output from the first and
second layers of CNN respectively, and performs the feature
fusion operation of splicing the features output from each
layer of the four layers of CNN.

This model extracts the HOG feature of face image, and
then L2 regularizes the extracted feature. In order to ensure
that these features contain as much detail as possible and
align with the HOG features in scale, the HOG conversion
function Γψ(·) is introduced, where ψ is the corresponding
parameter of the function, which will project the features of
CNN corresponding to the shallow network output to the
HOG space. In this space, we expect to make the model
pay more attention to the edge information of the face image
by minimizing the similarity between the output feature and
the sample’s HOG feature, so this paper introduces the edge
consistency loss Lfe in the model

Lfe = ||Γψ(Γtζ(x))−H(x)||22 (1)

Where, Γtζ(·) represents the output of the convoluted layer
of layer t and H(·) is the HOG feature extractor proposed in
literature.

We extract the LBP features of the face image. After LBP
features are extracted, we also perform L2 regularization.
Earlier, we mentioned that LBP features are more advanced
than HOG features and are complementary. In order to com-
bine edge shape information and texture information at the
same time to better capture the details of face images, this
paper introduces a local binary pattern regression module
on the network layer different from the directional gradient
histogram regression. We introduce an LBP transformation
function Fτ , where τ is the corresponding parameter of the
function. This function projects the output characteristics of
the shallow network into the LBP space and aligns them
with the LBP characteristics on a scale. Finally, this paper
introduces texture consistency loss Lft to achieve the goal
of enhancing texture information at the network layer:

Lft = ||Fτ (Γηζ (x))−B(x)||22 (2)

Where Γηζ (·) represents the output of the convoluted layer
of layer η, where η is not equal to t in Formula 1; B(·) is the
LBP feature extractor.

Self-attention module. We added a self-attention module
to the model backbone network to further screen the features

of different channels in the feature map output by each con-
volution layer of CNN, so the network can focus on the key
areas that help to identify the kinship, and improve the ex-
pression ability of the features extracted by the network. The
structure of the self-attention module is shown in Figure 2.

Figure 2: The architecture of self-attention module.

Metrics Network
After completing feature extraction, each face image pair
st = (xi, xj) can be expressed as the extracted feature pair
pt = (fi, fj), and we project the feature pairs into a metric
space, and we can verify the affinity by finding the similarity
of the feature pairs by metric learning. Traditional methods
usually learn a linear metric space to verify the affinity of a
given image pair of affinities. However, the mapping of the
face image feature pairs to the metric space should actually
be nonlinear. Therefore, this paper chooses to use the re-
cently proposed relational network (RN)(Sung et al. 2017)to
accomplish this nonlinear mapping task.

Loss Function Design
The loss function of the whole model is divided into two
parts, the loss generated by the hand-designed feature re-
gression module Lfe with Lft and the loss generated by
the metric learning network. Losses from manually designed
feature regression modules have been discussed above and
will not be repeated here. This section focuses on the losses
generated by the metric network.

The key to metric learning is to find a way to expand
the distance between positive examples and negative exam-
ples. Triplet Loss is the most representative loss function to
achieve this goal. Triplet loss is the most representative loss
function to achieve this goal. Triplet loss was first proposed
in FaceNet(Schroff et al. 2015), and its goal is to make the
features with the same labels as close as possible in the met-
ric space, while different features are as close as possible to
each other. The goal is to make the features with the same
label as close as possible in the metric space, while the fea-
tures with different labels as far as possible in the metric
space, and the learning process is shown in Figure 3.

Unlike the ternary loss function in FaceNet, we do not
calculate the Euclidean distance between the feature pairs
pt = (fi, fj) of the face images, but directly use the relation-
ship fraction output by the metric network as rij ∈ (0, 1) as
the distance between the face image pairs, which can avoid
unnecessary calculations and reduce the complexity of the
model. According to the definition of the triadic loss func-
tion, the loss Ltriplet of the part of the metric network is



Figure 3: Optimization process of the triplet loss function.

assumed to be fed to the network with the triad Ti as fol-
lows:

Litriplet = max{rap − ran +margin, 0} (3)

where rap is the relationship score between the anchor
point and the positive example, and rap is the relationship
score between the anchor point and the negative example.
The total loss of the metric network component is given as:

Ltriplet =

N∑
i=1

Litriplet (4)

The loss Lfe, Lft and triplet of the integrated manual
part design module part, the overall loss function of the
whole model can be be expressed as:

Ltotal = Ltriplet + Lfe + Lft (5)

By jointly minimizing Ltotal to optimize the parame-
ters of the model, on one hand the feature extraction part
of our model can focus on more regions with manual prior
knowledge (edges, textures), thus outputting a more multi-
level feature representation. On the other hand On the other
hand, the metric network projects the input feature pairs into
the metric space, which can achieve the goal of distancing
the feature pairs that do not have affinity and bringing them
closer to those that have affinity. The metric network projects
the input feature pairs into the metric space, so that feature
pairs that are not related can be distanced and feature pairs
that are related can be brought closer.

Experiments
This chapter will introduce the experimental results of the
HF2KM2 model proposed in this paper on the three main-
stream datasets of kinship recognition tasks and the re-
sults of comparison with the mainstream kinship recogni-
tion methods in recent years. In addition, this chapter will
introduce and analyze the results of the ablation experiment
conducted on the model.

Datasets and Experimental Settings
The datasets used in this experiment are KinFaceW-
I, KinFaceW-II(Zhang et al. 2015)and TSKin-
Face(Qin et al. 2015). Search for learning rates in
{0.0001,0.0005,0.001,0.005} and three in {0.7,0.8,0.9},
The size of the required hyperparameter margin in the tuple
loss.The ratio of the training set to the test set is 4:1.In the

experiment, in order to make fair comparison with other
kinship recognition model methods, the parameters were
adjusted to achieve the best performing model was run five
times and recorded with average recognition accuracy and
overall average recognition accuracy on the four relatives.

Experiment Results and Analysis
In order to better evaluate our model, we compare the
model presented in this paper with the most advanced
baselines in recent years. A comparison was made. For
the two datasets of KinFaceW-I and KinFaceW-II, we se-
lect WGEML(Jiangqing et al. 2018), DCBFD(Yan and
Haibin 2019), KML(Zhou et al. 2019), KinMix(Song et al.
2020), and DRN(Yan et al.2021) models as baselines. The
TSKinFace dataset was chosen separately DDMML(Yan et
al.2021), DKMR(Wang et al. 2020), TXQDA(Laiadi et al.
2020) as our baseline. Table 1, Table 2, and Table 3 are
shown Experimental results of the model on the KinFaceW-
I, KinFaceW-II, TSKinFace datasets.

Experimental results show that our model compares the
baseline on the KinFaceW-II and TSKinFace datasets to op-
timal performance. More specifically, on the KinFaceW-II
and TSKinFace datasets, the second-best performing meth-
ods are KinMix and WGEML, respectively, and the average
recognition accuracy of our proposed model has improved
by 1.2% and 2.6%. Our model achieves 80.2% accuracy on
the KinFaceW-I dataset. Although there is still some gap
compared to the new DRN model, our model is still one of
the most advanced models, superior to the newly proposed
KinMix method in 2020.

Although there is still some gap compared to the new
DRN model, our model is still one of the most advanced
models, superior to the newly proposed KinMix method in
2020. The KML model uses pre-production on large-scale
face datasets the trained VGGNet performs feature extrac-
tion, and obviously the model is basically not affected by
the small size of the dataset. DRN significantly enhances the
representation ability by introducing dense samples in local
areas and scales in the CNN feature space, which has great
advantages when the training data is not rich, but the time
cost of the work carried out in the feature space is very high,
and our end-to-end one-step training model is actually more
advantageous than it overall. The experimental results on the
KinFaceWII dataset actually validate our inference. The av-
erage recognition accuracy of our model on the KinFaceW-II
dataset is 5.2% and 2.1% higher than that of the KML model
and the DRN model, respectively, which highlights the su-
periority of our model.

Ablation study
In order to further verify the improvement of recognition
performance of each module of the model, a series of ab-
lation experiments are set up in this paper.

Figure 4 shows the difference in recognition performance
of the model in this paper when using only the fourth layer
output of the convolution layer, that is, using a single fea-
ture (conv4) for recognition and integrating the features out-
put from the fourth layer convolution layer, that is, using



method F-S F-D M-S M-D MEAN
WGEML 78.5 73.9 80.6 81.9 78.8
D-CBFD 79.6 73.6 76.1 81.5 77.6

KML 83.8 81.0 81.2 85.0 82.8
KinMix 76.5 75.6 83.5 78.5 78.5

DRN 85.8 87.5 88.1 80.9 85.6
Ours(HF2KM2) 76.1 80.1 80.1 86.3 80.2

Table 1: The evaluation of the results of HF2KM2 and other
models on KinFaceW-I dataset.

method F-S F-D M-S M-D MEAN
WGEML 88.6 77.4 83.4 81.6 82.8
D-CBFD 79.6 73.6 76.1 81.5 77.6

KML 87.4 83.6 86.2 85.6 85.7
KinMix 87.2 89.6 90.6 91.2 89.7

DRN 90.4 86.6 91.0 87.2 88.8
Ours(HF2KM2) 85.2 92.6 95.4 90.2 90.9

Table 2: The evaluation of the results of HF2KM2 and other
models on KinFaceW-II dataset.

multi-level features (conv1234) for fusion. The experimen-
tal results show that the performance of multi-level feature
recognition is higher than that of single feature recognition
because it takes into account the geometric, edge, texture
features of the shallow layer of the face image as well as the
high-level semantic abstract features of the deep layer.

Figure 4: Using a single feature versus using a multi-layered
feature.

At the same time, in order to further verify the role of
the manual design feature regression module and the self
attention module of the model in facial feature extraction,
we respectively add the hang-craft feature regression module
(HR) and the self-attention module (SA) to the backbone
network for kinship experiments. The experimental results
shown in the figure 5.

method F-S F-D M-S M-D MEAN
DDMML 86.6 82.5 83.2 84.3 84.2
WGEML 90.3 89.8 91.4 90.4 90.5
DKMR 81.3 77.8 79.2 77.7 79.0
TXQDA 89.3 90.7 90.3 91.0 90.3

Ours(HF2KM2) 93.0 92.5 92.7 94.1 93.1

Table 3: The evaluation of the results of HF2KM2 and other
models on TSKinFace dataset.

Figure 5: The effect of the hand-craft feature regression
module and the self-attention module on model perfor-
mance.

By analyzing the above experimental chart, we can eas-
ily draw the following conclusions: (1) hang-craft feature
regression module and self-attention module will improve
the recognition performance of the model, which verifies
the effectiveness of the two modules. (2) Compared with
the HR module and SA module, the feature fusion strat-
egy using four-layer CNN splicing can greatly improve the
performance of model recognition. Compared with the self-
attention module, the hang-craft feature regression module
can greatly improve the performance of model recognition.

Conclusion
Kinship recognition based on face image pairs is nowadays
widely used in various fields such as finding lost children,
social network analysis and criminal tracking. In this paper,
we propose a multi-level feature knowledge mining model
for kinship recognition, HF2KM2, which mines more dis-
criminative multi-level features in face images by introduc-
ing a hand-designed feature regression module and a self-
attentive module in the feature extraction part, and employ-
ing a feature fusion strategy. In order to verify the effec-
tiveness of the proposed model, it is compared with existing
good algorithms. The experimental results show that the per-
formance of the model proposed in this paper obtains signif-
icant results compared to the baseline.
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