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Abstract
Recently, with the development of intelligent manufacturing,
the demand for surface defect inspection is increasing. How-
ever, traditional defect detection methods require manual fea-
ture extraction for different defect types, which is not uni-
versal, while deep learning has achieved promising results
in defect inspection. Based on this, we proposed a network
based on the deeplabv3p including the Enhancement Mod-
ule, the Calibration Module, and deeplabv3p improving with
Denser ASPP (Atrous Spatial Pyramid Pooling). We first im-
prove deeplabv3p by using Denser ASPP for problems with
small defects, difficult identification and introduce a refine-
ment structure for incomplete segmentation results for mobile
screen. Then we proposed the Enhancement Module aiming
at the problems of glass panel noise, low contrast, small de-
fects and difficulty to identify. Additionally, we suggest the
Calibration Module to address the issue of incorrect labeling.
Finally, Our method is implemented on the mobile screen de-
fect dataset (MSDD-3) which is collected from the industrial
assembly line. Furthermore, in comprehensive experiments,
we demonstrate that our model outperforms other methods in
MSDD-3, which achieves 80.88% mIOU.

Introduction
With the progress of technology and globalization, defect
detection shows its great significance to ensuring product
quality and safety, so it is essential to found defect quickly
and correctly. However, defect detection in industrial sce-
narios also faces additional challenges, such as small differ-
ences between defect imaging and background, low contrast,
large variations in defect scale and type, and large amounts
of noise in defect images. However, product surface defect
detection is an important part of machine vision inspection,
and the accuracy of its detection directly affects the final
quality of the product. Deep learning has achieved good re-
sults in this area.

Inspired by the success of deep learning on object recog-
nition, it has been gradually applied to surface defect inspec-
tion and become the mainstream method due to its superi-
ority to detect tiny and complicated defects. Deep learning-
based defect inspection methods are divided into three types:
defect classification, defect detection, and defect segmenta-
tion. Defect classification aims to give the image-level label
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of the defect, while defect detection aims to locate the defect
with the box-level label given. Because of the changes in the
shapes and scales as well as the irregularity of defects, the
first two types of methods are difficult to precisely describe
the location and shape of complicated defects. Hence, the
segmentation method with pixel-level label attracts more at-
tention. In this paper, we mainly focus on discussing defect
segmentation.

In defect segmentation methods, the fruitful defect detec-
tion methods include the traditional image-processing meth-
ods and the classic machine vision methods. However, these
methods highly rely on handcrafted features from domain
knowledge and the subjective experience of the designer,
which is unable to ensure the model flexibility, owing to
the wide variety, random shape, and unfixed location. While
deep learning technology, especially Convolutional Neural
Network, have got many achievements. Deeplab (Chen et al.
2016) is a semantic image segmentation model, which used
atrous convolution to solve the problem that the signal’s de-
tails are lost when doing down-sampling. On the basis of
deeplabv3, deeplabv3p (Chen et al. 2018) using Encoder-
Decoder structure to refine the segmentation results. Previ-
ous defect segmentation works are likely using deep learning
methods like Unet (Ronneberger, Fischer, and Brox 2015)
or FCN (Long, Shelhamer, and Darrell 2014). But It is ob-
served that due to the limited defective images of industrial
products, defect segmentation for high-resolution images is
subject to a typical modes of failures: defects are easy to be
misclassified because some are extremely tiny, irregular in
shape, and too low-contrast to be easily confused with the
background. In our work, we use the improved deeplabv3p
model for defect segmentation of the mobile phone screen,
and the major contribution of the proposed methods are as
follows:
• We improve the deeplabv3p model. We propose a mul-

tiple small holes convolution stack structure (Denser
ASPP) to solve the problem of small defects and diffi-
culty in recognition. A refinement structure is proposed
aiming at the problem of imprecise segmentation results,
which uses two branch parallel convolution layer archi-
tecture to enhance segmentation fineness.

• We design a Enhancement Module considering the glass
panel noise, low contrast, small defects are difficult to
identify, which includes Fourier transform, gamma trans-



form and morphological expansion operations. And the
Calibration Module is proposed in view of the problem
of inaccurate labeling results.

• In comprehensive experiments, we demonstrate that our
model outperforms other methods in MSDD-3, which
achieves 80.88% mIOU.

Related Work
Traditional Defect Detection.
Traditional feature-based methods are mainly based on the
color, shape and other features of the defect, using image
processing techniques or combined with traditional machine
learning methods to detect the defect. One of the chal-
lenges is how to describe defects. Various traditional im-
age processing methods have been proposed to detect de-
fects in images such as thresholding-based methods (Ng
2004), segmentation-based methods (Oliveira and Correia
2009), and edge-detection methods (Dong and Shisheng
2008; Yang, Qi, and Li 2010) using edge detectors such as
Sobel (Kanopoulos, Vasanthavada, and Baker 1988). How-
ever, these methods are extremely influenced by noise, light,
and complicated backgrounds. Hence, the problem of defect
inspection is solved in a frequent space. Fourier Transform
(liang Wang and Zuo 2016), Gabor Transform, and Wavelet
Transform are applied to convert images to frequency do-
main for better detection. Hou et al. (Hou and Parker 2005)
use the Gabor Wavelet Transform operator suitable for tex-
ture expression to extract the frequency domain in formation
of the image.

Deep Learning based Defect Segmentation.
Semantic segmentation is the task of predicting pixel-level
category labels from images. The introduction of fully con-
volutional neural network (Long, Shelhamer, and Darrell
2014) is a remarkable milestonein semantic segmentation.
Most following works build upon it and either take advan-
tage of multi-scale inputs (Dai, He, and Sun 2014; Lin et al.
2015) , or use feature pyramid spatial pooling (Liu, Rabi-
novich, and Berg 2015; Zhao et al. 2016), or dilated convo-
lutions (Chen et al. 2016, 2017; Wang et al. 2018) to improve
the model, and encoder-decoder models (Chen et al. 2018;
Li et al. 2018; Badrinarayanan, Kendall, and Cipolla 2017)
have also been proved effective. Most following works build
upon it. For example, Qiu et al. (Qiu, Wu, and Yu 2019) pro-
pose a three-stage supervised segmentation method based on
FCN. Tabernik et al. (Tabernik et al. 2020) first use a seg-
mentation network based on FCN to locate surface defects
and then use a decision network to predict the probability
of defects in the whole image. Huang et al. (Huang, Qiu,
and Yuan 2020) integrate saliency detection based on U-Net
architecture and input the superposition of the image pro-
cessed by various saliency methods and the original image.
Xie et al. (Xie, Zhu, and Fu 2020) extract the frequency do-
main features of the image based on discrete Wavelet Trans-
form and fuse them with the multi-scale features of the back-
bone network, which effectively improves the segmentation
ability for small cement cracks.

Methods
Overview. Our network is mostly built on deeplabv3p (Chen
et al. 2018), with a number of enhancements. Specifically, it
includes the Enhancement Module, the Calibration Module,
and the improvement of deeplabv3p using Denser ASPP for
the characteristics of generally small defects. As shown in
Figure.1, the input image is enhanced by the Enhancement
Module, and then features are extracted by a deep neural net-
work. The high-dimensional features are concatenated with
the low-dimensional features by the Denser ASPP module,
and each pixel is classified by refinement module. Finally
use the Calibration Module to get the final prediction result.

Denser ASPP. ASPP(Atrous Spatial Pyramid Pooling) is
consists of one 1×1 convolutional layer, three atrous con-
volutional layers with customizable dilation rates, and three
pooling layers. The dilation factor of the atrous convolu-
tional layer can be customized to achieve free multi-scale
feature extraction. For each atrous convolutional layer, it is
applied as:

z[i] =
K∑

k=1

f [i+ r · k] · o[k] (1)

where z is the output feature, i is the location and f is the
feature map. r represent the atrous rate corresponding to the
stride with which we sample the input and o[k] is the kth
step convolution operation.

In deeplabv3p, the ASPP module uses 4 atrous convolu-
tions with dilation rates of 1, 6, 12, 18 and a pooling layer.
It can be expressed as follows:

z =h1,1(f) + h3,6(f) + h3,12(f)

+ h3,18(f) + h1,1(f) + g(f)
(2)

where hk,r(f) denote an atrous convolution, g(f) represents
global pooling operation.

Atrous convolution can expand the receptive field and
obtain multi-scale context information while the parameter
amount remains unchanged. This works very well for de-
tecting large objects. However, in industrial defect detection,
the defects are usually very small. If the expansion rate used
is too large, the output image will become sparse, and too
much local information will be lost, resulting in failure to
correctly identify small defects. Therefore, we use 8 atrous
convolutions with small dilation rates (dilation rates of 1-8,
respectively) and a global average pooling to compose the
denser ASPP module. This denser structure can obtain more
image details, which is very useful for small defects. It can
be expressed as follows:

z = h1,1(f) +

8∑
i=2

h3,i(f) + g(f) (3)

Refinement Module. In the decoder stage, high dimen-
sional features and low-dimensional features are merged in
the channel dimension. It can comprehensively utilize mul-
tiple level features to realize the complementary advantages
of multiple features and obtain more robust and accurate
recognition results. In deeplabv3p, the merged features only
get the prediction result of the model through a 3x3 con-
volution and a 1x1 convolution. We believe that this simple



Figure 1: The structure of segmentation network. The encoder module encodes multi-scale contextual information by applying
denser atrous convolution at multiple scales, while the simple yet effective decoder module refines the segmentation results
along object boundaries.

structure cannot fully utilize the merged features, resulting
in partial information loss. Therefore, we designed a more
complex structure: two 3x3 convolutions and a 1x1 convo-
lution in series and then an identical structure in parallel.
The final output takes the average of the two submolecules.
Through this Refinement Module, the loss of information
can be effectively reduced. it can be formulated as:

p(x) = R(h1,1(flow ⊕ ĥ1,1(z))) (4)

where flow is the low-level feature of feature extractor, ĥ1,1

denotes a upsampling operation attach to 1×1 conv layer,
⊕ denotes the concatenate operation, and R denotes the re-
finement structure. Therefore, the segmentation network can
obtain more fine-grained context information, extremely im-
proving the characteristics of generally tiny defects.

Enhancement Module. The defects in MSDD-3 dataset
are small and difficult to identify, resulting in difficulties in
labeling and identification. The function of the Enhancement
Module is to make small defects more obvious. First, we
apply a dilation operation to the mask of the image . This
makes the defect boundary expand outwards and alleviates
the error of defect boundary labeling during the labeling pro-
cess. Since the image of the defect part is almost merged
with the background, it is very difficult for the model to
identify the defect. So we used a gamma transform to im-
prove the contrast between the background and the defect.
The gamma transformation can be expressed as:

s = crγ (5)

r ∈ (0, 1) is the input value of the grayscale image, and c is
the grayscale scaling factor, usually 1. γ is the gamma factor
size which controls the scaling of the entire transform.

If the detection is performed in the spatial domain, the
shape and size of the defect are not fixed, and the defect is
not clearly distinguished from the background, and there is

also the influence of noise, which increases the difficulty of
detection. Therefore, we transform the image from the spa-
tial domain to the frequency domain through Fourier trans-
form. It can be expressed as:

F (x̃)(m.n) =

W−1∑
w=0

H−1∑
h=0

x̃(h,w)e−j2π( h
H m+ w

W n) (6)

where j2 = −1, x is the gray-scale value after gamma trans-
formation.

Then, we design a frequency domain filter Mβ to separate
the background information and noise, and retain the defect
information, Mβ is defined as:

Mβ(h,w) = 1(h,w)∈[−βH:βH,−βW :βW ] (7)
where 1 is the indicator function, and β ∈ (0, 1). Then
with the help of Mβ , we can apply the inverse Fourier
transform(F−1) to reconstruct image, turned back to the
spatial domain, it can be represented as:

x̃g = F−1(Mβ ⊙ F (x̃)) (8)
Calibration Module. The edges of defects are usually

blurred and easily mixed with the background, so the de-
tection of defect edges is often more difficult than the main
body of defects. So we propose a correction module to cor-
rect the results predicted by the model, especially for edge
regions. After the model outputs the prediction of the image,
by analyzing the predicted category information, the match-
ing convolution kernel size is automatically selected for dif-
ferent categories, and then the corresponding expansion op-
eration is performed to enhance the prediction accuracy of
the defect edge.

Experiments
Experimental Setups
Mobile Screen Defect Dataset (MSDD-3). The defect im-
ages are collected from the real industrial production line for



Figure 2: Some examples of defect samples and labels on
MSDD-3. The label of “dust” for this dataset is a weakly
supervised label, that is, the defective areas are represented
by a coarse-grained mask.

mobile screens, the size of an image is 5120×5120 and the
mobile screens have three classes of frequent defects (bub-
ble,dust, scratch) and one background class. Note that “dust”
is not strictly a surface defect, but it can interfere with the
detection of defects. Therefore, we also consider the coarse-
grained segmentation of “dust” region. As shown in Figure
2, each column represents a defect sample (top) with a cor-
responding label (bottom), where the black part is the back-
ground (non-defective) region, while the colorful region rep-
resents different defect types. To better visualize each defect
that exists in the high-resolution images, we show the de-
fects processed by the data enhancement module in Figure
3.

Figure 3: Visualization of highlighted defects. (a) Raw de-
fects. (b) Defects handled by the data Enhancement module.

Table 1: Comparison of different methods.E represents En-
hancement Module. C represents Calibration Module.

Methods Module mIOU background bubble scratch dust

D3p

- 72.96 98.34 69.56 55.64 68.29
+E 78.78 98.44 78.01 65.96 72.73
+C 74.77 98.35 69.19 64.04 67.49
+E+C 80.51 98.51 80.4 69.82 73.32

FPN

- 69.51 98.1 70.77 42.75 66.44
+E 75.45 98.15 5.8 57.79 70.08
+C 71.89 98.17 73.52 48.01 67.83
+E+C 75.69 98.18 77.61 58.08 68.9

Unet

- 69.95 98.18 55.5 57.7 68.49
+E 75.45 98.22 70.7 66.11 66.8
+C 72.04 98.07 59.7 62.3 68.12
+E+C 77.04 98.27 73 67.17 69.72

Ours +E+C 80.88 98.54 81.42 69.89 73.68

Due to hardware performance limitations, the high-
resolution image with the size of 5120 × 5120 results in high
computational resources in training. Therefore, we divide an
image into several patches with the relatively smaller crop
size (i.e.,512×512). And then similar to the building process
of other datasets, each cropped block is rotated and flipped
for data augmentation. Thus, MSDD-3 is built which is di-
vided into the training set with 14400 images and the vali-
dation set with 2000 images.

Implementation Details. For fair comparisons, we con-
sider a lightweight network by employing our segmenta-
tion network based on ImageNet pre-trained ResNet-18 as
our backbone segmentation network for the main experi-
ments to demonstrate the effectiveness of our method. For
training the network, we adopt SGD optimizer with initial
learning rate 0.001 on MSDD-3 dataset. The momentum
and weight decay are set to 0.9 and 0.0001, respectively.
The learning rate of the randomly initialized segmentation
head is 10× larger than that of backbones. We use the poly
scheduling to decay the learning rate during the training pro-
cess: lr = lrbase ×

(
1− iter

total iter

)0.9
. Besides, the number of

epochs is set to 60. All experiments are conducted on Py-
Torch framework, the training batch size is set as 8 with only
one GeForce RTX TITAN GPU. The segmentation perfor-
mance evaluation use mean Intersection-over-Union (mIoU)
metrics which is the consistent standard for semantic seg-
mentation tasks.

Experimental Results
We compare our approach with three different semantic seg-
mentation methods, namely FPN, UNet, and Deeplabv3p.
For fair comparison, we re-implemented all of the above
methods using the same experimental setup, and adopted the
same network architecture and test set. The comparison of
MSDD-3 is shown in Table 1. Among the methods com-
pared, our method achieved the best 80.88%. And we use
Enhancement module and correction module in each com-
parison method. After using the Enhancement module, the
gain on D3p, FPN and Unet is 5.82%, 5.94% and 5.80%
respectively, which indicates that the Enhancement module



Figure 4: Compared to other methods. Green represents bubbles; Yellow represents the ash layer; Blue is for scratches

can effectively improve the image quality and help the depth
model learn features better for specific glass panel data. Af-
ter using the correction module, the gains of the three meth-
ods are 1.81%, 2.38% and 2.39% respectively, which indi-
cates that the label correction module can effectively correct
the predicted results of the model. If the two modules are
used at the same time, the gains of the three methods are re-
spectively 7.55%, 6.18% and 7.39%, indicating that the two
modules can effectively complement each other. Our im-
proved deeplabv3p model is 0.37% better than the original
deeplabv3p model after the same use of both modules. Fi-
nally, we give the qualitative segmentation results, as shown
in Figure 4. Our method is closest to the ground truth, and
the segmentation results are smoother.

Ablation Studies
We have verified the effectiveness of our proposed method
through sufficient experiments, as shown in Table 2. The
first part compares the effectiveness of using a Enhance-
ment module with a correction module, with a gain of 5.82%
for the Enhancement module, 1.81% for the correction mod-
ule, and 7.55% for using both modules simultaneously. The
second section compares the effectiveness of improved sec-
tions on deeplabv3p, offering 0.39% gain using denserASPP,
0.31% gain using refinement module, and 0.77% gain us-
ing both sections. Part 3 compares the effectiveness of us-
ing the improved deeplabv3p and Enhancement modules to-
gether with the correction module. When using three im-
proved modules at the same time, the gain was 7.92%.

Conclusion
This paper makes some enhancements on the basis of
deeplabv3p due to the following two causes: 1) The small
defects are difficult to identify, resulting in difficulties in

Table 2: We put forward four modules for ablation experi-
ments, respectively is denser ASPP, refinement module En-
hancement module (E), calibration module (C).

Denser ASPP Refinement module E C mIOU
72.96

✓ 78.78
✓ 74.77

✓ ✓ 80.51
✓ 73.35

✓ 73.27
✓ ✓ 73.73
✓ ✓ ✓ 79.97
✓ ✓ ✓ 74.92
✓ ✓ ✓ ✓ 80.88

labeling, identification and segmentation. 2) The edges of
defects are usually blurry, combined with the influence of
noise and contrast, making them easier to mix with the back-
ground. We proposed a mobile phone screen defect segmen-
tation based on deeplabv3p consisting of the Enhancement
Module, the Calibration Module, and deeplabv3p improv-
ing with Denser ASPP and the Refinement Module. Ex-
tensive experimental results demonstrate the effectiveness
of our method by achieving the highest accuracy compared
with state-of-the-art methods on MSDD-3. Based on the in-
spiring results, we further examine the effectiveness of each
component in detail and provide some empirical analysis. In
the future, we expect future work to explore more effective
methods for mobile phone screen defect segmentation.
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