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Abstract

The main task of Single image superresolution (SISR) is to
restore a given low resolution image into a high resolution
image through a specific algorithm. When a low resolution
image is given, it usually corresponds to many high resolu-
tion images, so it can be said that the reconstruction process
is very uncertain. A review of previous super resolution meth-
ods shows that there are all kinds of problems, such as train-
ing instability and mode collapse in Gan-driven methods, so
we propose a single image super resolution attention diffu-
sion probability model (SRADM). SRADM takes low reso-
lution image as input, converts Gaussian noise gradually into
super resolution image through Markov chain, which can ef-
fectively enhance the quality of high resolution image. Here,
we also introduce attention mechanism and residual predic-
tion, which can effectively improve the model performance.
We do a lot of experiments on DIV2K and other data sets,
and finally can get a variety of super resolution results, and
the model is easy to train, the effect is good.

Introduction
Single Image Super-resolution Reconstruction (SISR) aims
to reconstruct high resolution (HR) images with clear de-
tailed features from a given low resolution (LR) image. Im-
age super resolution was first proposed by Harris (HARRIS
1964) in the 1960s, aiming to reconstruct a high resolution
image from a low resolution image. (TSAI 1984) used mul-
tiple low-resolution images to restore high-resolution im-
ages in 1984. With the research and development of machine
learning technology, Freeman et al. (FREEMAN, PASZ-
TOR, and CARMICHAEL 2000) applied machine learning
method to the field of image super resolution for the first
time in 2000. Subsequently, a large number of super resolu-
tion methods based on machine learning emerged, such as
the method based on neighborhood embedding (CHANG,
YYEUNG, and XIONG 2004), the method based on sparse
representation (YANG, WRIGHT, and HUANG 2008) and
the method based on local linear regression (TIMOFTE, DE,
and VAN 2013). However, most of these methods use the un-
derlying features of images for super resolution reconstruc-
tion, and the expression ability of features is limited, which
limits the reconstruction effect to a large extent.
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Deep learning method can adaptively learn deep features
from the training set and has been widely used in the field
of image super resolution in recent years. In 2014, Dong et
al. (DONG, LOY, and HE 2015) used Convolutional neu-
ral networks (CNNs) to directly learn the nonlinear map-
ping relationship between low-resolution images and high-
resolution images, and the reconstruction effect has been
greatly improved compared with the traditional methods.
Since then, researchers have proposed a large number of
deep learning-based superresolution network models, such
as the use of residual learning and residual modules to con-
struct deep super-resolution network models (LIM, SON,
and KIM 2017), recursive structures (KIM, KWOn, and Mu
2016) and dense connections (ZHANG, TIAN, and KONG
2018). However, the gan driven method (Cheon et al. 2018)
(Kim et al. 2019) also combines content loss and antagonis-
tic loss well, so that the super resolution image with higher
quality can be obtained. However, the gan driven method is
also prone to problems such as mode collapse, and the gen-
erated super resolution image does not have the characteris-
tics of diversity, and the model is not easy to converge in the
training process.

At present, the diffusion model has a very powerful func-
tion in image generation (Ho, Jain, and Abbeel 2020). The
diffusion model uses Markov chain to continuously add
noise to the original data in the diffusion process to obtain
Gaussian noise, and then recovers the original data from the
Gaussian noise through the reverse diffusion process. The
diffusion model is trained by optimizing a variable of the
lower bound of variational, which can effectively solve the
problem of mode collapse in gan driven method. The Atten-
tion Mechanism (Fei et al. 2017), as an effective means of
feature screening and enhancement, has been widely applied
in many fields of deep learning. It can be used to emphasize
or select important information of the object and suppress
some irrelevant details. It can bring great performance im-
provement to image processing, and we apply it in our super
resolution diffusion model.

In this paper, we propose a single image Super Resolution
Attention Diffusion probability Model(SRADM), which can
solve the problem of pattern collapse in gan method and ef-
fectively improve the performance of the model by using
the attention mechanism. First, SRADM iteratively recov-
ers the original data in the process of diffusion and reverse



Figure 1: Selected some results from our 2040×1356
model(4×prediction). The SR predictions is richer in detail
than LR image. As you can see from 3rd to 5th column, The
resulting images are varied in texture detail.

diffusion, and rebuilds a given single low-resolution image
into a high-resolution object. At the same time, we intro-
duce residual prediction and attention mechanism into the
model. Residual prediction can accelerate the model con-
vergence and make the training effect more stable, while
attention mechanism can enhance the model performance
and improve the quality of super resolution image. Both of
them enable SRADM to recover image details better. Our
SRADM has the following two advantages: 1) Firstly, super
resolution can obtain high quality images, and the image is
also characterized by diversity, which effectively solves the
disadvantages of gan method; 2) The training occupies less
space, is convenient for training, and the training process is
stable and efficient, and the training speed is fast.

Finally, our experiments on DIV2K(Timofte et al. 2018)
and other data sets proved that: 1) our SRADM model can
reconstruct different super resolution images when a single
image is input, and the reconstructed images of the model
are more diverse; 2) compared with some models, the train-
ing is faster and the number of parameters is less.

Related Works
Single Image Super-Resolution
In recent years, deep learning methods have been increas-
ingly applied to the super resolution of single images.
Firstly, SRCNN (DONG, LOY, and HE 2015) sets a prece-
dent for the end-to-end mapping between LR and HR im-
ages. SRCNN first undersamples the images to obtain LR
images, and then enlarging the image to the target resolution
by using bicubic interpolation, and then using three convo-
lution layers of different sizes. Feature extraction was com-
pleted, nonlinear mapping between LR-HR image pairs was
fitted, and output results of the network model were recon-
structed. Finally, the final HR image was obtained. Then,
FSRCNN (Chao Dong 2019) improved SRCNN: 1) Directly
used LR image as input, reducing the feature dimension; 2)
Using a smaller filter than SRCNN, the network structure
is deepened; 3) Adopt the back-end up-sampling hyperdivi-
sion framework, and add deconvolution layer at the end of
the network to enlarge the image to the target resolution.

After all kinds of convolutional neural network-based su-
per resolution algorithms, super resolution algorithms based
on generative adversarial network emerge, which have more
prominent effects in image reconstruction effect, network

computation amount and operation speed compared with the
former. SRGAN (Ledig et al. 2017) algorithm applies the
generator network and discriminator network confrontation
training to super resolution image reconstruction for the first
time. It uses the generator to generate HR image, the dis-
criminator to discriminate the reconstructed HR image and
the original HR image, and reversely optimizes the gener-
ator network and discriminator network. At the same time,
”perceptual loss” is used to replace the traditional MSE loss
function to enhance the restoration of image details and en-
sure the high fidelity and high quality of the reconstructed
image. While ESRGAN (Wang et al. 2018) enhances the
performance of SRGAN, improves the generalization ability
of network, uses residual scaling to accelerate the training
speed of deep network and reduces the number of network
operation parameters, so that the reconstructed HR image
has richer texture features and the color brightness is closer
to the original HR image.

In terms of data sets, image data sets of super resolution
image reconstruction used for deep learning involve many
fields, covering people, animals and plants, buildings, nat-
ural landscapes, etc., and many open source data sets dif-
fer greatly in external conditions (resolution size, number of
sheets, format, etc.) and internal conditions (content, style,
texture, etc.) of images.

Diffusion models
Diffusion probability model (Sohldckstein, Eric A Weiss,
and Ganguli 2015) is a kind of generation model. The dif-
fusion model uses Markov chain to gradually apply noise to
the image in the forward stage until the image is destroyed
into complete Gaussian noise, and then learns the process
of restoring the image from Gaussian noise to the original
image in the reverse stage. The diffusion model helps to en-
hance the diversity of the generated results and the quality
of the generated results is high. Diffusion models have not
been widely used recently in the field of image reconstruc-
tion. Our SRADM model is capable of producing diverse
and high quality image results.

Attention mechanism
Attention mechanism was first proposed in the field of visual
images, and then it was used in image classification (Mnih
et al. 2014) and machine translation task (Bahdanau, Cho,
and Bengio 2014), and then it was widely used in various
NLP tasks based on neural network models such as RNN
or CNN. The attention mechanism has the characteristics of
fewer parameters, fast speed and good effect, which can sig-
nificantly improve the quality of image generation. In this
paper, the attention mechanism is introduced into the model,
which further improves the effect of image generation and
improves the performance of the model.

The proposed method
Diffusion Model
Diffusion models are inspired by non-equilibrium thermo-
dynamics. They define a Markov chain of diffusion steps
to slowly add random noise to the data, and then learn to



Figure 2: Overview of two processes in SRADM

reverse the diffusion process to construct the desired data
samples from the noise. Unlike VAEs or flow models, dif-
fusion models are learned through a fixed process and the
latent variables are high-dimensional (same as the original
data). In this section, we will briefly introduce it.

There has been previous work on similar diffusion mod-
els, including diffusion probabilistic models (Sohldckstein,
Eric A Weiss, and Ganguli 2015), noise-conditioned score
network (Song and Ermon 2020), and denoising diffusion
probabilistic models (Ho, Jain, and Abbeel 2020).

We define a forward diffusion process in which we add
small amount of Gaussian noise to the sample in T steps and
transform the input image into pure Gaussian noise . And
our model is responsible for restoring back to image . In this
way, the diffusion model is actually very similar to GAN,
which generates a picture with a given noise , but it should
be emphasized that the noise and picture are of the same
dimension. The diffusion model include two processes: for-
ward diffusion process and reverse diffusion process.

The posterior q(x1, · · · , xt|x0), called the diffusion pro-
cess, transforms the data distribution q(x0) into a latent vari-
able distribution q(xt), fixed as a Markov chain that gradu-
ally Gaussian noise is added to the data according to the
variance table β1, β2.

q (x1, · · · , xT | x0) :=

T∏
t=1

q (xt | xt−1) (1)

q (xt | xt−1) := N
(
xt;

√
1− βtxt−1, βtI

)
(2)

where βt is a small positive number that can be treated
as a constant hyper-parameter. Setting (αt) := 1 − βt,
ᾱt :=

∏t
s=1 αs, as the diffusion process allows sampling

xt in closed form at any time step t:

q (xt | x0) = N
(
xt;

√
ᾱtx0, (1− ᾱt) I

)
(3)

Then can be further reparameterized as

xt (x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ, ϵ ∼ N (0, I) (4)

The inverse process transforms the latent variable distri-
bution pθ (xt) into a data distribution pθ (x0) parameterized
by θ. It is defined by a Markov chain with a learned Gaussian
transformation starting with p (xT ) = N (xT ;0, I)

pθ (x0, · · · , xT−1 | xT ) :=

T∏
t=1

pθ (xt−1 | xt) (5)

pθ (xt−1 | xt) := N
(
xt−1;µθ (xt, t) , σθ (xt, t)

2
I
)

(6)

During the training phase, we maximize a variational
lower bound (ELBO) on the negative log-likelihood and in-
troduce KL divergence and variance reduction[3].

E [− log pθ (x0)] ≤ L := Eq[DKL (q (xT | x0) ∥p (xT )︸ ︷︷ ︸
LT

)

+
∑

t>1 DKL (q (xt−1 | xt, x0) ∥pθ (xt−1 | xt))︸ ︷︷ ︸
L0

− log pθ (x0 | x1)︸ ︷︷ ︸
L0

]

(7)
This shift requires a direct comparison of pθ (xt−1 | xt)

and its corresponding diffusion process posterior. Setting
µ̃t (xt, x0) :=

√
ᾱt−1βt

1−ᾱt
x0+

√
αt(1−ᾱt−1)

1−ᾱt
xt, we have equiv-

alent with:

q (xt−1 | xt, x0) = N
(
xt−1; µ̃t (xt, x0) , β̃tI

)
(8)

Eq.(3),(5),(6) and (8) ensure all KL divergences in Eq.(7)
is a comparison between Gaussians, where σ2

θ = β̃t =
1−ᾱt−1
1−ᾱt

βtfor t > 1, β̃1 = β1, and constant C, we have:

Lt−1 = Eq

[
1

2σ2
t

∥µ̃t (xt, x0)− µθ (xt, t)∥2
]
+ C (9)

For simplicity, the training procedure minimizes the vari-
ant ELBO with and t as input:

min
θ

Lt−1(θ) = Ex0,ϵ,t

[∥∥ϵ− ϵθ
(√

ᾱtx0 +
√
1− ᾱtϵ, t

)∥∥2]
(10)

where εθ is the noise predictor.
In inference, we first sample an xT ∼ N (xT ;0, I)

and sample xt−1 ∼ pθ (xt−1 | xt) according to Eq.(5),(6),
where

µθ (xt, t) :=
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
(11)

σθ (xt, t) := β̃
1
2
t , t ∈ {T, T − 1, . . . , 1} (12)

Self attention

zi =

n∑
j=1

SoftMax
((

xiW
Q
) (

xjW
K
)T) (

xjW
V
)
(13)

Transformer (A, N, and N 2017) was originally proposed
for the NLP field and has been very successful in the NLP



Figure 3: Self-attention mechanism process

field. Vit(A, L, and A 2020) tries to apply Transformer to
the CV field.Self-attention maps a query and a set of key-
value pairs to an output. More specifically, for an input se-
quence, such as an embedding of words or image patches,
x = (x1, . . . , xn) of n elements where xi ∈ Rdx , the
self-attention module computes an output sequence z =
(z1, . . . , zn) of the same length, where zi ∈ Rdz . Each out-
put element zi is computed as a weighted sum of linearly
transformed input elements: The process is shown in the fig-
ure 1. The calculation process of Self Attention is as follows:

Among them, WQ,WK ,WV ∈ Rdx×dz is a parameter-
ized matrix, WQ,WK ,WV are all learnable parameter ma-
trices, and x represents Self Attention The vector in the mid-
dle window (windows), z represents the output vector of self
attention, self-attetion divides the feature map into n non-
overlapping windows according to the window size, where i
represents the i-th window (windows), j represents The j-th
window (windows).

SRADM
As shown in Figure 2, SRADM is built on the T-step diffu-
sion model, which contains two processes: the diffusion pro-
cess and the inverse process. Instead of predicting the HR
image directly, we apply residual prediction to predict the
difference between the HR image xH and the upsampled LR
image up(xL), denoting the difference as the input residual
image x0. The diffusion process transforms x0 into an un-
derlying xT in a Gaussian distribution by gradually adding
the Gaussian noise ε implicit in Eq.(4). According to the
equation. (5),(6),(11) and (12), the inverse process is deter-
mined by εθ, which is a conditional noise predictor based on
RRDB (Wang et al. 2018) Low-resolution encoder (LR en-
coder for short) D. The reverse process transforms the latent
variable xT into a residual image xr by iteratively denois-
ing in finite steps T using a conditional noise predictor εθ,
encoded from the LR image by the hidden state conditional
LR encoder D. The SR image is reconstructed by adding
the resulting residual image xr to the upsampled LR image

up(xL). Therefore, the goal of εθ is to predict the noise ε.

Conditional Noise Predictor
The conditional noise predictor εθ predicts the noise added
at each time step of the diffusion process conditioned on
the LR image information, according to Eq.(10),(11) and
(12). As shown in Fig.2, we take U-Net as the main body,
and take the output of the 3-channel xt, diffusion time step
t ∈ {1, 2, . . . , T − 1, T} LR encoder as input. First, xt is
converted to a hidden layer by a 2D convolutional block
consisting of a 2D convolutional layer and a Mish activation
layer (Misra 2019). The LR information is then fused with
the hidden 2D convolutional block output. We use Trans-
former sinusoidal position encoding [Vaswani et al., 2017]
to convert time step t into time step embedding te. The last
outputs hidden and te are then fed sequentially into the con-
traction path, an intermediate step, and the dilation path.
Both the shrinkage path and the expansion path consist of
four steps, each of which sequentially applies two resid-
ual blocks and a downsampling/upsampling layer. To reduce
the model size, we only double the channel size in the sec-
ond and fourth shrinkage steps and halve the spatial size of
the feature maps in each shrinkage step. The downsampling
layer in the shrinking path is a two-step 2D convolution, and
the upsampling layer in the dilation path is a 2D transposed
convolution. The intermediate step consists of two residual
blocks, inserted between the shrinking path and the expand-
ing path. Furthermore, the input connections of each expan-
sion step come from the corresponding feature maps of the
contraction path.

Finally, a 2D convolutional block is applied to generate
ϵ̂ in time step t-1 as prediction noise, which is then used
to recover xT−1 according to Eq.(5),(6),(11) and (12). Our
conditional noise predictor is easy to train and stable due to
multi-scale skip connections. Furthermore, it combines local
and global information through contraction and expansion
paths.

LR Encoder
The LR encoder encodes the LR information xe, which is
added to each reverse step to steer the generation to the cor-
responding HR space. In this paper, we choose to follow
the RRDB architecture of SRFlow (Lugmayr et al. 2020),
which employs a residual-in-residual structure and multiple
dense skip connections without batch normalization layers.
We discard the last convolutional layer of the RRDB archi-
tecture, since we do not target specific SR results but hide
LR image information.

Experiments
Datasets
SRADM is trained and evaluated on face SR (8x) and gen-
eral SR (4x) tasks. For face SR, we use the Celeb-Faces
Attributes Dataset (CelebA) (Liu et al. 2015), a large face
attribute dataset containing over 200,000 celebrity images.
The images in this dataset cover large pose changes and
background clutter. In this paper, we train and evaluate his



Figure 4: Our proposed method framework

5,000 images from the test split of SRFlow using the en-
tire training set consisting of 162,770 images. We crop the
aligned patches intensively using standard MATLAB bicu-
bic kernels and resize them to 160 × 160 as HR ground truth.
Downsample the HR image using a bicubic kernel to obtain
the corresponding LR image. For ProgFSR(Kim et al. 2019),
We use the performed double -line cores introduced in its
original papers for fair comparison.

Training
Training and evaluation First of all, we used the L1 loss to
iterate for 100K and conducted a preview for the LR en-
coder D to achieve efficiency. Training and use of condi-
tional noise predictors. (6) As a loss term, Adam (Kingma
and Ba 2014) as a optimizer, batch size 16 and learning rate,
half of the steps of 100K. The entire SRADM takes about
34/45 hours (300K/400K steps) and trains on a 11GB mem-
ory GeForce RTX 2080TI, which is CELEBA/DIV2K.

Performance
In this subsection, we evaluate SRADM by comparing with
serveral SR methods on CelebA and DIV2K.The detailed
configuration of the baseline model can be found in their
original paper.

Table 1: Result for 8×SR of faces on CelebA.

Method PSNR SSIM LPIPS LR-PSNR

Bicubic 23.37 0.65 0.483 34.65
RRDB 26.89 0.78 0.220 48.00

ESRGAN 23.25 0.66 0.115 39.91

SRADM 25.35 0.73 0.105 52.32

As shown in Table 1, for most evaluation indicators of SR
(PSNR, SSIM, and LR-PSNR) and comparable LPIPS, the
quantitative results of SRADM are comparable to those of
previous methods, which indicates that our method is feasi-
ble. Figure 5 indicates that SRADM well balanced degree
of sharpness and natural, and produced a strong consistency
with the LR images.Compared with GAN, our model can
generate exquisite details and overcome the defects of GAN
model in diversity. Through multiple sampling, the model
can predict a variety of high-frequency information, which
forms numerous and exquisite details of the image. More-
over, compared with SRfow, the structure of our model is

Figure 5: Some results(8×) in CelebA. SRADM predicts rich
details and keep consistency with the ground true.

relatively simple, which only contains small parameters and
has low requirements on hardware. Therefore, better results
can be trained in a relatively short time.After about 15 hours
of running on the 3090 device, the model was able to con-
verge.

We also evaluate SRADM on DIV2K (4×) and compare
it with RRDB, ESRGAN, RankSRGAN. As shown in Table
2, for most of the evaluation indicators (PSNR, SSIM, and
LR-PSNR) and comparable LPIPS, SRADM quantified re-
sults better than previous methods, demonstrating the effec-
tiveness and great potential of our approach. Figure 5 shows
that SRADM strikes a good balance between sharpness and
naturalness and produces a strong consistency with LR im-
ages.

Table 2: Results for 4×SR for DIV2K Dataset.

Method PSNR SSIM LPIPS LR-PSNR

Bicubic 26.71 0.77 0.410 38.71
RRDB 28.99 0.83 0.270 54.91

RankSRGAN 26.55 0.75 0.128 42.33
ESRGAN 23.25 0.66 0.115 39.91

SRADM 27.33 0.79 0.137 55.43

In order to further test the generalization ability of the
model on non-SR data sets, we collected a considerable



Figure 6: The successful samples of SRADM. Model gener-
ate rich details than Low-resolution images and and maintain
consistency with the ground truth.

Figure 7: Some example of failure.The details generated do
not meet expectations.

number of non-SR images for testing. Multiple experiments
show that the proposed model can still achieve satisfactory
results in terms of general data. Although not every data
generation results live up to expectations, the percentage of
failures is within acceptable limits.Figure 6 exhibits some
successful samples of our model, as the result shows, The
images generated by the model not only retain the semantic
information of LR image, but also generate rich and delicate
details.

Due to the randomness of sampling, the SR images ob-
tained are diverse and close to the GT images in quality.
In addition, due to the randomness of sampling, the occur-
rence of some events is bound to fail to meet expectations, as
shown in Figure 7.Not only that, we also noticed that when
the quality of the low resolution image itself is poor, the re-
sulting high resolution image does not improve much as the
figure 8 shows.

Conclusion
In this article, we proposed SRADM. Our work uses the
Malcov chain to convey the HR image to the incubation pe-
riod with a simple distribution standard, and then perform
SR prediction during the reverse process. Essence In order

Figure 8: Prediction from poor quality image.

to speed up integration and stable training, SRADM intro-
duced residual predictions. And add self -attention mecha-
nisms to make the model more concerned about important
regional characteristics. We have conducted extensive ex-
periments on facial and general datasets that SRADM can
generate diverse and realistic SR images and avoid excessive
smoothness and pattern collapse in PSNR -oriented methods
and GAN drive methods, respectively. In addition, SRADM
is trained with a small amount of footprint without extra dis-
crimination. In addition, SRADM allows flexible image ma-
nipulation, including potential space interpolation and con-
tent fusion.

In the future, we will further improve the performance of
diffused SISR models and speed up inference. We will also
expand work to more image recovery tasks (for example,
image Denoising, Debluring and Dehazing) to verify the po-
tential of the diffusion model in the image recovery domain.
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