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Abstract

Multi-agent Reinforcement Learning (MARL) has been
widely recognized as a superior approach by enabling a team
of agents coordinate their behaviors while acting in a de-
centralized way. One representative class of work is value
decomposition, which decomposes the global shared multi-
agent Q-value Qtot into individual Q-values Qi. One of
the key challenges in MARL is performance degradation of
multi-agent systems in complex environments brought by a
large number of agents. Moreover, most previous works have
some assumptions about the relationship between Qtot and
Qi, which lacking theoretical basis. To tackle the problem
caused by the massive agents in MARL, We propose Qat-
tenLinear, an improved deep Q-value factorization network
based on Qatten, which is based on a linear attention mech-
anism, allowing easy maximization of joint action values
in off-policy learning and guaranteeing consistency between
centralized and decentralized policies. We use the differen-
tiable key-value memory model to estimate the coefficients
and derive the relations from the agents to the global. More-
over, instead of using the native attention mechanism to cal-
culate the attention weights, QattenLinear uses linear atten-
tion to calculate the attention weights in order to optimize
the time complexity from square level to linear level. Ex-
tensive experiments on the widely used StarCraft II bench-
mark show that our method is superior to the state-of-the-art
MARL methods in different scenarios.

Introduction
Reinforcement learning has been widely used in various
fields, such as robots, games, recommendation systems, etc.
(Wang et al. 2018) . As a branch of artificial intelligence, re-
inforcement learning is an important path to realize decision
intelligence. It divides the world into two parts: agent and
environment.(Sutton and Barto 2018) Agents interact with
the environment by performing actions and get feedback
from the environment. In reinforcement learning, feedback
from the environment is reflected in the form of rewards, as
shown in Figure 1.

Multi Agent System (MAS) refers to the existence of mul-
tiple agents that need to be controlled within a system. The
cooperative multi-agent reinforcement learning problem has
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Figure 1: The interaction between the agent and the environ-
ment: the agent observes the state St and the corresponding
reward value Rt at time t. Based on the state and reward in-
formation, the agent decides how to take appropriate actions.
After the agent executes the action At, the environment will
give the state St+1 and reward Rt+1 information of the t+1
time step based on the action taken by the agent.

achieved lots of attention in the last decade, where a sys-
tem of agents learns towards coordinated policies to opti-
mize the accumulated global rewards. The change of envi-
ronmental state is not determined by a single agent, but by
the joint behavior of all agents. The idea of the early multi-
agent reinforcement learning algorithm is very intuitive, that
is, an independent single-agent reinforcement learning algo-
rithm is used to control each agent in the multi-agent sys-
tem, and each algorithm model is independent of each other.
In this case, the actions of the other agents will have an im-
pact on the environmental state, but do not improve the en-
vironmental instability brought by the training of the rein-
forcement learning algorithm. However, the joint state ac-
tion search space will increase exponentially with the in-
crease of the number of agents. Another choice is the decen-
tralized approach that each agent learns its policy. Letting
individual agents learn concurrently based on the global re-
ward (aka. independent learners) (Tan 1993) is the simplest
option. However, it is shown to be difficult in even sim-
ple two-agent, single-state stochastic coordination problems.
One main reason is that the global reward signal brings the
non-stationarity that agents cannot distinguish between the
stochasticity of the environment and the exploitative behav-
iors of other co-learners (Lowe et al. 2017), and thus may



mistakenly update their policies.
To mitigate this issue, decentralized policies can be

learned in the centralized training with decentralized execu-
tion (CTDE) paradigm (Oliehoek, Spaan, and Vlassis 2008).
A typical method in the CTED framework is Value Decom-
position, which determines the role of each agent in the joint
reward and then somehow isolate its share out of it. So that
each agent can get the reward in line with the current task,
so as to alleviate the problem of inconsistent task objectives
of each agent in the multi-agent system. Value Decomposi-
tion Network (VDN) (Sunehag et al. 2017) represents Qtot

as a sum of individual Q-values that condition only on indi-
vidual observations and actions. QMIX(Rashid et al. 2018)
employs a network that estimates joint action-values as a
non-linear combination of per-agent values. QTRAN (Son
et al. 2019) is proposed to guarantee optimal decentraliza-
tion inheriting the additive assumption while avoiding repre-
sentation limitations introduced by VDN and QMIX. Qatten
(Yang et al. 2020) is a variant of QMIX, which supplements
global information through a multi-head attention structure
that condition on local observations. However, Qatten can-
not achieve a linear complexity for the increase in the num-
ber of agents, so the effect will be weakened when the num-
ber of agents increases.

In this paper, We further improved the limitations of Qat-
ten, that is, in view of the limitations that it is difficult to deal
with multiple agents, I used the attention mechanism to deal
with it linearly, and finally applied it to the hybrid network to
achieve a far-reaching Higher than the original Qatten effect
method, this method is called QattenLinear.

Related Work
Single-agent reinforcement Learning Reinforcement
learning (RL) is a type of machine learning where an agent
learns to take actions in an environment to maximize some
notion of cumulative reward. For decrete action space, in
1988, Sutton et al. proposed Temporal-Difference Learning
(TD) and applied it to the MDP model (Sutton and Barto
2018). In 2015, the DeepMind team combined the RL with
the DL for the first time, and proposed the DQN (Mnih et al.
2015), which was published in the journal Nature, in which
the neural network was used to represent the role of the
Q table in Q-Learning (Watkins and Dayan 1992), which
solved the problem of ”Dimensional disaster”, the trained
game AI can outperform humans at Atrai games. How-
ever, Some researchers (Van Hasselt, Guez, and Silver 2016)
found the problem of over-estimation in DQN, and proposed
the Double-DQN algorithm to successfully solve the phe-
nomenon of over-estimation. Prioritize replaybuffer (Schaul
et al. 2015) significantly improved the convergence of DQN
algorithm by assigning priorities to buffer samples. Later,
Dueling DQN (Wang et al. 2016) was proposed, which im-
proved the DQN algorithm. The algorithm divides the value
of Q into a value function and an advantage function, which
speeds up the convergence of the algorithm.

Multi-agent reinforcement learning Multi-agent rein-
forcement learning (MARL) is a subfield of reinforcement
learning that involves multiple agents learning to interact

with each other and with their environment in order to ac-
complish a common goal.In 1998, Kaelbling et al. proposed
Partically Observable MDP (POMDP), a Markov process
based on local observations, which provided a modeling
basis for multi-intelligent reinforcement learning(Oliehoek,
Spaan, and Vlassis 2008).Kraemer proposed the CTDE
framework , which uses centralized training for distributed
execution to train decentralized policies, and Foerster pro-
posed the COMA algorithm (Lowe et al. 2017), which re-
duces the problem of reputation assignment among agents
by means of a counterfactual mechanism. Later, Schroeder
pointed out the limitation of the COMA method in evaluat-
ing the global Q-values from the joint action state space, and
the algorithm becomes inefficient in more complex cases
(Schroeder de Witt et al. 2019).Sunehag P proposed the
VDN method (Sunehag et al. 2017), which decomposes the
global Q-values into Q-values at the individual level, using a
simple summation approach. Kyunghwan Son proposed the
QTRAN method (Son et al. 2019), which uses global infor-
mation to train the joint network of intelligences, and then
further trains the individual network through the joint net-
work of intelligences. Qatten(Yang et al. 2020) mainly pro-
poses a practical multi-head attention based q-value hybrid
network (Qatten) to approximate the global q-value. Qatten
leverages key-value memory operations to explicitly mea-
sure the importance of each individual to the global system,
thereby transforming individual Qi into Qtot in a multi-head
attention structure. QattenLinear combines the multi-head
linear attention mechanism to modify Qatten, and the atten-
tion mechanism is processed linearly, and finally applied to
the hybrid network, so as to achieve a method that is much
higher than the original Qatten effect.

Background
DEC-POMDP A fully cooperative multi-agent task can
be described as a Dec-POMDP consisting of a tuple G =<
S,U, P, r, Z,O, n, γ >. s ∈ S describes the true state of
the environment. At each time step, each agent a ∈ A ≡
1, · · · , n chooses an action ua ∈ U , forming a joint action
u ∈ U ≡ Un. This causes a transition on the environment
according to the state transition function P (s0|s, u) : S ×
U × S → [0, 1]. All agents share the same reward function
r(s, u) : S × U → R and γ ∈ [0, 1) is a discount factor.

Attention mechanism The attention mechanism is de-
rived from the bionics of the human visual attention mech-
anism. A method of data processing that was born. When
calculating the specific attention matrix A, we usually
need three important components, which are: 1.Query(Q)
2.Key(K)3.V alue(V ),Q,K, V ∈ RN×d. Q, K, V are cal-
culated as follows:

Q = xWQ, K = xWK , V = xWV

After getting the variables of Q, K, and V , multiply Q and
K to calculate the weight coefficient:

wi = softmax

(
QiK

T

√
dk

)



where, softmax(z)j =
ezj∑K
k=1 ezk

(j = 1, · · · ,K)

Finally, after matrix multiplication of the attention coef-
ficient vector wi and the V feature, the new features of the
self-attention network are obtained:

snewi = wiV

.

Linear attention mechanism For the self-attention mech-
anism in the original Transformer, when it is assumed that
the initial processing obtains Q,K, V ∈ RNd. The time
complexity of solving the attention matrix A is O(N2),
and then the weighted average is obtained Its complexity is
O(N2d), and the general situation is that the length N of the
text we input is much larger than the feature dimension d, so
the complexity can be simplified to O(N2), as shown in (a)
of Figure 2.
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Figure 2: Figure (a) represents the original attention mecha-
nism, and figure (b) represents the self-attention mechanism
for linearization. Usually, the amount of data N we process
is far greater than d, that is, N ≫ d. Therefore, when the
final calculation is complicated, d can be ignored relative to
N . So the native self-attention mechanism is O(N2) time
complexity, while the linearized self-attention mechanism is
O(N).

We can expand the exponential form according to Taylor’s
formula:

eq
T
i kj ≈ 1 + qT

i kj

Then the calculation of the attention mechanism can be
written as follows:

D(Q,K,V )i =

∑N
j=1

(
1 +

(
qi

∥qi∥2

)T (
kj

∥kj∥2

))
vj∑N

j=1

(
1 +

(
qi

∥qi∥2

)T (
kj

∥kj∥2

)) ,

and simplified as:

D(Q,K,V )i =

∑N
j=1 vj +

(
qi

∥qi∥2

)T ∑N
j=1

(
kj

∥kj∥2

)
vT
j

N +
(

qi

∥qi∥2

)T ∑N
j=1

(
kj

∥kj∥2

)

The above equation can be written in vectorized form as:

D(Q,K,V ) =

∑
j V i,j +

(
Q

∥Q∥2

)((
K

∥K∥2

)T

V

)
N +

(
Q

∥Q∥2

)∑
j

(
K

∥K∥2

)T

i,j

.

By changing the calculation order as above, we can reduce
the computational complexity to 0(N). As shown in (b) of
figure 2.

Method
In this section, we propose the QattenLinear, an improved
deep Qvalue decomposition network based on Qatten(Yang
et al. 2020). According to the proof of the general decom-
position form in Qatten, the design of the decomposition
network of QattenLinear is designed according to the de-
composition form of Eq.(1). Figure 1 illustrates the over-
all architecture, which consists of agents’recurrent Qvalue
networks representing each agent’s individual value func-
tion Qi (τ i,ai) and the refined attention based value-mixing
network to model the agent-level individual impacts while
transforming individual Qvalues Qi s to Qtot. Besides Qi s,
the global information (including s and ui) is also fed into
the attentionbased mixing network.

For each h, in order to implement the inner weighted
sum operation, we use the differentiable key-value mem-
ory model (Graves, Wayne, and Danihelka 2014)to estimate
the coefficients and derive the relations from the individu-
als to the global. This is different from MAAC(Iqbal and
Sha 2019), which uses the self-attention to learn the critic
for each agent by selectively paying attention to informa-
tion from other agents. Instead of performing self-attention
among each pair of the agents, we use this mechanism to
help the whole system to model each individual agent’s im-
pact at a per-agent level. Moreover, different from Qatten,
which uses the native attention mechanism to calculate the
attention weights, QattenLinear uses linear attention to cal-
culate the attention weights in order to optimize the time
complexity from square level to linear level. Specifically, we
pass the global state’s embedding vector es (s) and the indi-
vidual features’ embedding vector e i (ui) into the Linear
Attention Module to generate the similarity value.

The linear attention module in QattenLinear uses the
elu(·) function for each pair of Query, Key and Value vec-
tors. For the above linear attention mechanism, the elu(·)
function is selected instead of the above feature mapping
function.

For the outer sum over h, we use multiple attention heads
to implement the approximations of different orders of par-
tial derivatives. By summing up the head Q-values Qh from
different heads, we get

Qtot ≈ c(s) +

H∑
h=1

Qh, where Qh =

N∑
i=1

λi,h

(
Qi

)
H is the number of attention heads. Lastly, the first term

c(s) could be learned by a neural network with the global
state s as the input.
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Figure 3: The overall architecture of QattenLinear. The right is agent i’s recurrent deep Q-network, which receives the action-
observation history record τ i (last hidden states hi

t−1, current local observations oit and last action ait−1). The left is the mixing
network of QattenLinear, which mixes Qi(τ it , a

i
t) together with st and ui

t. In general, s is global state and ui is the agent i’s
individual features like its position.

QattenLinear naturally holds the monotonicity and satis-
fies the IGM principle

∂Qtot

∂Qi
≥ 0,∀i ∈ {1, 2, · · · , N}

Thus, QattenLinear allows tractable maximization of the
joint action-value in off-policy learning and guarantees con-
sistency between the centralized and decentralized poli-
cies. In previous descriptions, we directly add the Q-value
from different heads. However, to relax the weight bound-
ary limitation, we could assign weights w h for the Q-values
from different heads. To guarantee monotonicity, we retrieve
these head Q-value weights with an absolute activation func-
tion from a two-layer feed-work network fN , which adjust
head Q-values based on global state s.

Qtot ≈ c(s) +

H∑
h=1

wh

N∑
i=1

λi,hQ
i

Experiment
In this section, we evaluate QattenLinear in the StarCraft II
decentralized micromanagement tasks(Figure) and use Star-
Craft Multi-Agent Challenge (SMAC) environment as our
testbed, which has become a common-used benchmark for
evaluating state-of-the-art MARL approaches. In the SMAC
environment, each agent has a field of view, and can only ob-
serve teammate information, enemy information, and map

information within the field of vision. In this paper, the field
of view is set to 9. As shown in the figure 4,

combat unit

alliance

enemy

visual field

Figure 4: The attack range and field of vision display of the
agent

When the teammates are out of the field of view, the agent
cannot determine whether the teammates are alive, which
is also a big challenge for the agent’s behavior selection.
The agent can observe the following attributes of enemy
units within the field of view: distance, relative x, relative y,



Figure 5: Map 2s3z battle diagram, the smaller unit is Zealots, the number is 3; the larger unit is Stalkers, the number is two.
The display on the unit is the blood volume and shield value, the blue is the shield value, and the green is the blood volume
value. During the battle, both sides must first destroy the shield to cause damage.

shield, health, unit type. If in a map environment, the combat
units are of the same type, then the characteristic of the unit
type will be ignored. If the unit has a shield, only by break-
ing the existing shield of the unit can it cause damage to the
enemy. When the unit is not damaged, the shield can be re-
generated. In addition to the field of view, the agent also has
its own attack range, and can only attack the enemy within
its own attack range. The attack range used in this paper is
6. The action space of the agent is discrete, and the actions
that can be taken are: move (north, south, east, west), attack,
treat (only applicable to the medical transport aircraft Medi-
vac), and do not operate these actions. The agent can only
execute the attack command when the enemy is observed
within the field of vision and the enemy is within the attack
range. When the blood volume of the agent reaches 0, it will
fall down, unable to perform any actions, and cannot be de-
tected by friendly forces.

Regarding the setting of the reward value of the agent, at
a certain time step, if the trained game agent attacks the en-
emy unit and the blood volume decreases, the reward value
equivalent to the damage caused to the enemy unit can be
obtained. When the agent attacks, if it kills the enemy agent,
it can get an extra 10 points of reward. If the agent kills all
of the enemy units, the game is won and an additional 200
bonus points are awarded. In addition, this paper normalizes
all rewards so that the maximum reward value is limited to
20.

In this paper, representative maps such as 2s3z, 8m vs 9m
and 1c3s5z are used for experiments, as shown in Table 1.
In order to prevent contingency in experimental training, 5
independent experiments were conducted for each algorithm
trained in each map, and finally the median of the 5 results
was taken as the final result to avoid outliers during the train-
ing process. Training and evaluation schedules such as the
testing episode number and training hyper-parameters are
kept the same as QMIX in SMAC. The final experimental
results are in figure 6.

We can see that our method QattenLinear is better than
Qatten on the 2s3z map, and it is comparable to the original
Qmix algorithm, and the convergence speed is slightly better

than the Qmix algorithm. Of course, for the 2s3z map, there
is no big gap because the map itself is very simple, and most
methods can produce good results. On the 1s3s5z map, the
QattenLinear algorithm is better than the QMIX and Qat-
ten algorithms after 800,000 steps, indicating that the linear
attention mechanism can improve the performance of the
algorithm. There is an obvious gap on the 8mVS9m map.
Our method QattenLinear is much improved than the orig-
inal Qatten and Qmix, so we can conclude that our method
is indeed aimed at multiple agents, and our method has been
improved.

Result
In this paper, we study the problems caused by massive
agents in Deep-marl and find that previous works did not
explicitly consider the impact of excessive number of agents
on the whole system when converting individual Qi to Qtot.
Inspired by this, we propose an improved deep Q-value de-
composition network based on Qatten called QattenLinear,
which allows tractable maximization of the joint action-
value in off-policy learning and guarantees consistency be-
tween the centralized and decentralized policies. To better
derive the relations from the agents to the global, we use
the differentiable key-value memory model to estimate the
coefficients. Since Qatten using the native attention mecha-
nism to calculate the attention weights, which has high time
complexity, we use linear attention to calculate the atten-
tion weights in order to optimize the time complexity from
square level to linear level. With the extensive experiments,
we show that 1) In the final phase, our proposed QattenLin-
ear has better effectiveness than baseline methods on 2s3z
and 8mVS9m maps. For 1c3s5z map, our proposed Qatten-
Linear still yields competitive results comparing with base-
line methods. 2) In the training phase, our proposed Qatten-
Linear has faster convergence speed than baseline methods
on all three maps.
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Figure 6: The mean test win rate of the algorithm on the 2s3z, 1c3s5z, 8m vs 9m maps in the StarCraft II game, where the red
curve represents the performance of the qmix algorithm, the blue curve represents the Qatten algorithm based on the attention
mechanism, and the green dotted line represents the performance of the QattenLinear algorithm based on linear attention
mechanism.

Table 1: Maps in SMAC environment

Name Ally Units Enemy Units Type

3m 3 Marines 3 Marines Homogeneous
8m 8 Marines 8 Marines Homogeneous

2s3z 2 Stalkers, 3Zealots 2 Stalkers, 3 Zealots Heterogeneous
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