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Abstract

Aerial object detection has broad application prospects in intelli-
gent transportation, military and other fields, and has received more
and more attention in recent years. Different from common object
detection tasks, aerial objects are always non-axis aligned with ar-
bitrary orientations having small size, which makes this task more
challenging. Based on these observations, we proposed an aerial
object Detector for exploring Rotated and Small Targets, termed
RSTDet, which can be well qualified for the task of oriented ob-
ject and small object detection. To be specific, RSTDet uses the
six-parameter rotating representation method. This simple design
allows the network to generate high-quality oriented proposals at
a lower cost. It not only avoids generating multiple redundant ro-
tating bounding boxes, but also ensures high accuracy of detection.
Secondly, there are a large number of small targets in aerial images,
and we admit bottom-up path augmentation to solve this problem.
With a simple branch in the feature pyramid, the network can more
fully mine shallow features, which are particularly important for
small target detection. Thirdly, in order to better focus on target
features, especially extracting information about small objects, we
also add channel and spatial attention to the backbone network. Our
method has achieved competitive results on the general aerial ob-
ject detection dataset, DOTA, which demonstrates the effectiveness
of our proposed method.

Introduction
The rapid development of deep learning has made many

breakthroughs on object detection in recent years. Never-
theless, small object detection (SOD) is still the bottleneck
of object detection (Cheng et al. 2022). As one of the im-
portant applications of SOD, aerial object detection is even
more difficult than general object detection task because of
the small size of the detected objects with arbitrary rotation
direction.

Aerial object detection is undoubtedly a significant but
challenging task, which has attracted increasing attention.
The mainstream method generally regards aerial object de-
tection as an angle regression task. The most direct method
is to add angle prediction to the general object detection
framework (Lin et al. 2017a,b; Ren et al. 2017), or generate
proposals with angle (Ma et al. 2018). These simple designs
make the original horizontal bounding box become a rotat-
ing bounding box, effectively improving the detection effect
on aerial objects. However, the simple design cannot meet
the needs of real scenes. First, there is usually some devia-

Figure 1: Some visualization results of Faster R-CNN to-
wards oriented detection. It is obvious that the angle regres-
sion based method may lead to inaccurate results.
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Figure 2: Mainstream methods generate oriented proposals
through massive computation. (a) Rotated RPN generates a
large amount of oriented anchors with different angles, ra-
tios, and scales. (b) RoI Transformer adopts a lot of com-
plicated operations including RPN, RoI Alignment, and re-
gression, which are very time-consuming.

tion in the angle prediction of the model, as shown in Fig-
ure 1; second, generating angled proposals will bring a large
number of redundant proposals, resulting in huge computing
costs, as shown in Figure 2.

Recently, many researchers have improved on these is-
sues. For example, Gliding vertex (Xu et al. 2020) adopts a
new border representation method, which does not directly
predict the target angle. Oriented RepPoints (Li et al. 2022)
avoids the regression of angles by using anchor free man-
ner to generate bounding boxes. RoI transformer (Ding et al.
2019a) generates accurate angled bounding boxes through a
series of operations such as RPN, RoI Alignment and region.
These methods improve the detection effect of rotating tar-
gets, but they all ignore the small size of aerial targets, and
the recall rate of these methods is not ideal for small objects.

Based on the observation of the above phenomena, we
propose RSTDet, a detection framework that can adapt to
rotating objects and small objects, which is more suitable
for the actual scene of aerial object detection. For rotating
objects, we propose six-parameter rotating representation.



It refers to the midpoint offset representation proposed by
Oriented RCNN (Xie et al. 2021) and adds two parame-
ters α and β. The six-parameter rotating representation de-
termines a rotation box through six parameters, and adds
the operation of taking points from the circumscribed cir-
cle. In combination with the original border representation,
we can adaptively generate boxes with angles, and solve the
problems of inaccurate angle regression and high calculation
cost. For small objects, RSTDet adopts a bottom-up path
augmentation (Liu et al. 2018) in the feature pyramid, which
enables the backbone network to better integrate multi-scale
features. In addition, attention mechanism is also applied to
the network of feature extraction and feature fusion, which
helps to better extract the feature information of small ob-
jects. In summary, our contributions are listed as follows.

• We develop a novel aerial object detector for exploring
rotated and small targets (RSTDet), which takes into ac-
count the two tasks of rotating and small object, making
it more suitable and practical for aerial object detection.

• We design a six-parameter rotating representation, which
can regress an accurate rotation box with a small amount
of calculation. It helps the network solve the problem of
rotation target.

• We use bottom-up path augmentation to make the shal-
low features and deep features deeply integrated, and
thus the network has a stronger ability to explore targets.

• In addition, the attention mechanism introduced also en-
ables the network to extract key features, which is con-
ducive to discovering difficult objects. The above strate-
gies alleviate the problem of small object detection.

Our method was validated on the DOTA benchmark, which
is one of the most commonly-used dataset for aerial object
detection. The results well demonstrate that our approach
achieves substantial gains over competing methods and ver-
ify the effectiveness of it.

Related Work
Compared with traditional object detection, the challenge

of aerial object detection is the angle uncertainty. It’s tricksy
to calculate by the Region Proposal Network in the classic
object detection method (Ren et al. 2017). Secondly, the de-
tection task has the bottleneck of small object detection due
to the objects in aerial images are generally small.

Oriented Object detection. There are many methods for
rotating targets. These methods are used to determine the
rotation angle of the detected target and calibrate it with a
rotation box. RoI Transformer (Ding et al. 2019a) uses a de-
coder to convert HRoI (horizontal anchor) to RRoI (rota-
tion anchor). Though it greatly improves the detection accu-
racy of rotating targets, the decoder with three fully connec-
tion layers introduces many parameters. R3Det (Yang et al.
2021b) and CAD-Net (?) apply multi parameter regression
to get the rotation angle of the object. Xie et al. (E, P, and
X 2020) acquires boundary contour through center point re-
gression and polar coordinate regression. Later, Gliding Ver-
tex (Xu et al. 2021a) and RSDet (Qian et al. 2019) inno-
vatively use quadrangles to locate objects. However, these

methods may cause discontinuous boundary problems. Yang
et al. (Yang and Yan 2020) solves the problem of angle peri-
odicity by introducing periodicity, which changes angle pre-
diction from regression task to classification task. Recently,
Yang et al. (Yang et al. 2022) proposes a simple and more
efficient SkewIoU approximate loss for oriented object de-
tection. Different from the traditional way of using angle re-
gression, Oriented R-CNN (Xie et al. 2021) proposes a box
representation of midpoint offset, which not only avoids a
lot of calculation processes, but also provides constraints for
bounding box regression, greatly improving detection per-
formance.

Small Object Detection. As a branch of object de-
tection, small object detection is specially used to de-
tect small objects and has the great significance for the
practical application of various scenarios. Because of the
limited from small objects and scarcity of small object
datasets, small object’s detection accuracy and precision has
a big gap with medium-sized object detection.In this con-
text, some approaches have been proposed.They are data-
manipulation methods, scale-aware methods, feature-fusion
methods,superresolution methods, context-modeling meth-
ods, and other approaches.Meanwhile, in order to alleviate
the scarcity of data, some data sets for small target detection
have been proposed, such as SOD,TinyPerson and SODA.

- data-manipulation methods Small objects usually only
account for a small part of the data set. A simple and
effective method is increasing the number of small ob-
jects.Related works are Oversampling-based augmentation
strategy (Kisantal et al. 2019) and Automatic augmentation
scheme (Zoph et al. 2020).

- scale-aware methods The early object detection meth-
ods based on deep learning are difficult to detect small ob-
jects because they only use high-level features. To solve this
problem, some papers propose Multi-scale detection in a
divide-and-conquer fashion (Kong et al. 2016) and Tailored
training schemes (Li et al. 2019b).

- feature-fusion methods Due to the existence of sub-
sampling layers of deep CNN, the features of small objects
may gradually disappear with the depth change. To solve this
problem, the common methods fuse the features of different
layers or branches, so as to obtain better feature representa-
tion of small objects (Shrivastava et al. 2016).

- superresolution methods Most super-resolution meth-
ods use generative adversarial network (GAN) (Goodfellow
et al. 2014) to obtain high-quality feature representations
that are beneficial for small target detection, while other
methods choose parameterized upsampling operation to en-
hance features (Deng et al. 2022).

- context-modeling methods Prior knowledge that cap-
tures semantic or spatial associations is called context; for
example, humans can use the relationship between objects
and the environment or between objects to facilitate the
recognition of objects and scenes (Torralba 2003). Informa-
tion context can provide more decision support in identify-
ing objects with poor viewing quality than the objects them-
selves. Therefore, the detection of small objects can be en-
hanced by using context cues.



Figure 3: Overall framework of RSTDet. (a) The input image first passes through the backbone network with attention mech-
anism, which includes feature extraction, feature fusion, and bottom-up path augmentation. The obtained feature map is then
sent to a two-stage detector. (b) In the first stage, six-parameter rotating representation gets the rotation bounding box. (c) In the
second stage, the rotated RoI Align crops the feature and sends it to the fully connection layers in the second stage to complete
the classification and regression tasks.

Proposed Solution
Framework Overview
As shown in Figure 3, after the image is input into the net-

work, features at different levels are extracted through sev-
eral convolution layers, and these features are sent to the
feature pyramid network for feature fusion. These two parts
both contain attention mechanisms, so that the network can
better focus on effective features. Subsequently, bottom-up
path augmentation further fuses the shallow features into the
deep features. The obtained four level feature maps will be
upsampled to the same size before concat. The merged fea-
ture map goes through two convolution branches, one of
which gets the objectness score to evaluate the foreground
and background score, and the other uses six-parameter ro-
tating representation to get the rotation box. This rotation
box is sent back to the feature map, and the features in it
are cropped by rotated RoI Align and sent to the fully con-
nection layers for classification and regression. The testing
phase is similar to the training phase. The input image goes
through the backbone network and the detector. After com-
pleting classification and regression tasks, the results are
output.

Bottom-up Path Augmentation
In the neural network, the features extracted from the shal-

low layer are generally low-order, such as shape texture

and so on, while those extracted from the high layer of the
network are generally high-order features, such as whether
there is hair or ears and so on. In the target detection, the
shape texture features extracted from the bottom layer of the
network are particularly critical for object positioning. The
classical FPN aggregates the information of feature maps of
different scales from the bottom to the top. Since the num-
ber of layers of the backbone feature extraction network is
generally very deep, the information at the bottom will lose
a lot of information after transmission. We argue that it is
unfavorable for small object detection.

Figure 4: Illustration of bottom-up path augmentation.

In response to this issue, we add a bottom-up path aug-
mentation module to our model. As shown in Figure 4, it
consists of four feature layers similar to FPN. The high-
resolution features of the bottom layer pass through a 3 ×



3 convolutional layer with stride 2 to reduce the spatial size.
Then the features with the upper level features from FPN are
fused by element-wise add. They are further fused by a 3 ×
3 convolution layer. The above process is repeated to obtain
features at all levels. The bottom-up path augmentation uses
a few layers and preserves the beneficial features of various
textures, shapes and other shallow layers, which is crucial
for small object detection.

Six-parameter Rotating Representation
Due to the different rotation angles of objects, the tradi-

tional object detection methods can not be satisfied. We
adopt the midpoint offset method proposed in Oriented R-
CNN (Xie et al. 2021), and propose a novel six-parameter
rotating representation. This method obtains the rotating ob-
ject proposal by adding the horizontal box outside the ro-
tating object proposal and offset parameters, which greatly
improve the efficiency of anchor generation and improve the
algorithm performance.

Figure 5: The six-parameter rotating representation diagram.

As shown in Figure 5, the angled object is represented
by O = (x, y, w, h,∆α,∆β), where (x, y) represents the
object’s center coordinate, (w, h) represents the width and
height of the external horizontal proposal of the oriented
proposal where the object is located, and (∆α,∆β) repre-
sents the midpoint offset of the object proposal and the ex-
ternal horizontal proposal. In this way, on the basis of the
original horizontal proposals regression, the regression of
any two adjacent sides of the midpoint offset can realize the
generation of oriented proposals. By decoding these 6 pa-
rameters, we get the coordinate set of the object representing
V = (v1, v2, v3, v4).The details are as follows:

v1 = (x, y − h/2) + (∆α, 0) = (x+∆α, y − h/2)
v2 = (x+ w/2, y) + (0,∆β) = (x+ w/2, y +∆β)
v3 = (x, y + h/2) + (−∆α, 0) = (x−∆α, y + h/2)
v4 = (x− w/2, y) + (0,−∆β) = (x− w/2, y −∆β)

After obtaining the vertices set V of the oriented pro-
posal through the midpoint offset method, we further adopt
the operation of taking points from the circumscribed circle.
This is because although the midpoint offset representation
determines the rotation angle of the object, the constraints of
the bounding rectangle usually make the bounding box too
small. Based on this observation, we extended the diagonal
of the proposal to the position of the circumscribed circle,
effectively alleviating this problem.

With the generation of rotation proposals, they are sent
to the feature map to crop object features. The rotated RoI
alignment (Ding et al. 2019b) is applied to finish this work.
The crop features are then used as input to the detection
head, which is consist of four fully connection layers using
for box classification and regression. The detection head is
constructed on the basis of the original Faster R-CNN (Ren
et al. 2017) realized by adding Angle regression parameters.

Attention Mechanism
The features of small objects are more likely to be lost

in the process of down sampling, resulting in difficult de-
tection. In order to alleviate this problem, we add attention
mechanism to feature extraction and feature fusion, includ-
ing channel attention and spatial attention. This enhances the
feature information.

Figure 6: The CBAM module embedded in RSTDet.

Figure 7: The ECA module embedded in RSTDet.

In the feature extraction stage, the network not only needs
to pay attention to the spatial position of the tiny cues in
the image but also needs to choose different feature infor-
mation among different channels. Therefore, the mixed do-
main attention mechanism can be considered. In this regard,
the CBAM module is integrated into each residual block in
resnet. The embedding mode is shown in Figure 6. The out-
put of each layer of resnet is adjusted by attention, for the
purpose of extract detailed features.

In the feature fusion stage, the information of different
levels is exchanged and fused. The channel attention mech-
anism can make the fusion process pay more attention to
some special channels. To this end, the ECA module is
added before and after feature fusion. For the fused feature
map, we also add an ECA module in order to induce the
model focus on features conducive to detection in the subse-
quent stage.



Method Backbone PL BD BR GTF SV LV SH TC BC ST SBF RA HA SP HC mAP
One-stage

RetinaNet-O† R-50-FPN 88.67 77.62 41.81 58.17 74.58 71.64 79.11 90.29 82.18 74.32 54.75 60.60 62.57 69.67 60.64 68.43
DRN (Pan et al. 2020) H-104 88.91 80.22 43.52 63.35 73.48 70.69 84.94 90.14 83.85 84.11 50.12 58.41 67.62 68.60 52.50 70.70

R3Det (Yang et al. 2021a) R-101-FPN 88.76 83.09 50.91 67.27 76.23 80.39 86.72 90.78 84.68 83.24 61.98 61.35 66.91 70.63 53.94 73.79
PIoU (Chen et al. 2020) DLA-34 80.90 69.70 24.10 60.20 38.30 64.40 64.80 90.90 77.20 70.40 46.50 37.10 57.10 61.90 64.00 60.50
RSDet (Qian et al. 2021) R-101-FPN 89.80 82.90 48.60 65.20 69.50 70.10 70.20 90.50 85.60 83.40 62.50 63.90 65.60 67.20 68.00 72.20
DAL (Ming et al. 2020) R-50-FPN 88.68 76.55 45.08 66.80 67.00 76.76 79.74 90.84 79.54 78.45 57.71 62.27 69.05 73.14 60.11 71.44

S2ANet (Han et al. 2021) R-50-FPN 89.11 82.84 48.37 71.11 78.11 78.39 87.25 90.83 84.90 85.64 60.36 62.60 65.26 69.13 57.94 74.12
Two-stage

ICN (Azimi et al. 2018) R-101-FPN 81.36 74.30 47.70 70.32 64.89 67.82 69.98 90.76 79.06 78.20 53.64 62.90 67.02 64.17 50.23 68.16
Faster R-CNN-O† R-50-FPN 88.44 73.06 44.86 59.09 73.25 71.49 77.11 90.84 78.94 83.90 48.59 62.95 62.18 64.91 56.18 69.05

CAD-Net (Zhang et al. 2019) R-101-FPN 87.80 82.40 49.40 73.50 71.10 63.50 76.60 90.90 79.20 73.30 48.40 60.90 62.00 67.00 62.20 69.90
RoI Transformer (Ding et al. 2019b) R-101-FPN 88.64 78.52 43.44 75.92 68.81 73.68 83.59 90.74 77.27 81.46 58.39 53.54 62.83 58.93 47.67 69.56

SCRDet (Yang et al. 2019) R-101-FPN 89.98 80.65 52.09 68.36 68.36 60.32 72.41 90.85 87.94 86.86 65.02 66.68 66.25 68.24 65.21 72.61
RoI Transformer+ R-50-FPN 88.65 82.60 52.53 70.87 77.93 76.67 86.87 90.71 83.83 82.51 53.95 67.61 74.67 68.75 61.03 74.61

Gliding Vertex (Xu et al. 2021b) R-101-FPN 89.64 85.00 52.26 77.34 73.01 73.14 86.82 90.74 79.02 86.81 59.55 70.91 72.94 70.86 57.32 75.02
FAOD (Li et al. 2019a) R-101-FPN 90.21 79.58 45.49 76.41 73.18 68.27 79.56 90.83 83.40 84.68 53.40 65.42 74.17 69.69 64.86 73.28

CenterMap-Net (Wang et al. 2021) R-50-FPN 88.88 81.24 53.15 60.65 78.62 66.55 78.10 88.83 77.80 83.61 49.36 66.19 72.10 72.36 58.70 71.74
FR-Est (Fu et al. 2021) R-101-FPN 89.63 81.17 50.44 70.19 73.52 77.98 86.44 90.82 84.13 83.56 60.64 66.59 70.59 66.72 60.55 74.20

Mask OBB (Wang et al. 2019) R-50-FPN 89.61 85.09 51.85 72.90 75.28 73.23 85.57 90.37 82.08 85.05 55.73 68.39 71.61 69.87 66.33 74.86
Oriented R-CNN R-50-FPN 89.46 82.12 54.78 70.86 78.93 83.00 88.20 90.90 87.50 84.68 63.97 67.69 74.94 68.84 52.28 75.87
Oriented R-CNN R-101-FPN 88.86 83.48 55.27 76.92 74.27 82.10 87.52 90.90 85.56 85.33 65.51 66.82 74.36 70.15 57.28 76.28

Ours
RSTDet R-50-PAFPN 89.48 78.73 54.89 73.44 78.93 82.40 88.26 90.90 86.69 84.61 64.69 67.30 75.67 68.64 58.17 76.48
RSTDet R-101-PAFPN 89.64 83.82 55.74 72.62 78.47 83.76 88.08 90.90 86.70 84.99 64.48 67.04 76.22 70.88 56.91 76.68
RSTDet‡ R-50-PAFPN 90.19 85.29 60.88 80.37 80.02 85.14 88.60 90.90 86.32 87.83 71.39 71.01 81.77 79.23 74.33 80.88
RSTDet‡ R-101-PAFPN 90.33 85.99 62.13 78.57 78.84 85.26 88.66 90.87 86.80 87.75 70.27 71.19 82.95 76.02 72.36 80.53

Table 1: Comparison with state-of-the-art methods on the DOTA dataset. † means the results from AerialDetection. ‡ denotes
multi-scale training and testing. Bold indicates the best result, and underline indicates the best result without multi-scale training
and testing.

Experiments
Dataset
We used the DATA set (Xia et al. 2018) released by Wuhan

University in 2017. Classical data sets such as VOC and
COCO contain relatively few small targets, and the marked
objects are also horizontal due to gravity. In contrast, the
DOTA dataset uses aerial or satellite images collected by air-
craft, helicopters and drones, and the marking boxes used in
the DOTA dataset are rotatable rather than horizontal. There
are 2806 target images in the DOTA dataset, with resolu-
tion ranging from 800 * 800 to 4000*4000. It’s about 35 GB
in size and contains 15 categories. These categories include
objects of all sizes and shapes.

Experimental Setting
Our experiments were carried out on a single RTX 1080Ti,

using mmdetection framework. The optimizer uses SGD,
where the weight attenuation and momentum of SGD are
0.0001 and 0.9, respectively. For DOTA dataset preprocess-
ing, we cut the image into 1024*1024 squares, and scaled
the original image to 0.5, 1.0 and 1.5 times of the original,
and then obtained 1024*1024 squares by 524 step size. This
is a general preprocessing operation. In the training phase,
the learning rate starts at 0.005 and will gradually decrease
with the increase of epoch. The number of epochs is 12 in
total, and the NMS threshold is 0.1 when integrating image
blocks. We used ResNet50 and ResNet101 as the feature ex-
traction network of the model, and test the performance on
the test set of the DOTA dataset.

Experimental Result
We compare the proposed method with 19 state-of-the-art

methods on DOTA dataset. Table 1 reports the results. The

proposed RSTDet reaches impressive results, which exceed
all methods. Specifically, without multi-scale training and
testing strategies, our method reaches 76.48% mAP with
resnet50 and 76.68% mAP with resnet101, outperforming
than other methods. Adding multi-scale trick makes the re-
sults turn to 80.88% mAP and mAP, respectively.

Conclusion
In this paper, we propose RSTDet, a unified object detec-

tion method that explores the rotated and small targets. We
first design a six-parameter rotating representation to detect
rotating targets in a low-cost and effective way. We also add
the bottom-up path augmentation after the feature pyramid
network, which makes better use of shallow features. The
attention mechanism is further introduced to make the net-
work focus on the important features of channel and spa-
tial domain, which improves the performance of detection
to some extent. Experimental results show that our method
has competitive performance to the current state of the art
methods.
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