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Abstract

In hepatic arterial chemoembolization (TACE: transcatheter
arterial chemoembolization), real-time localization of
guidewire endpoints on intraoperative images is a prerequi-
site for computer-assisted interventional surgery, which can
reduce radiation dose, contrast dose, and operative time. At
the same time, since the guide wire is a non-rigid body with
a slender structure, it increases the difficulty of the endpoint
localization task in noisy X-ray fluoroscopy. However, cur-
rent research methods mainly focus on guidewire endpoint
localization in a single fluoroscopic image, and there are still
few methods for guidewire endpoint localization in serial
X-ray images. Therefore, we combined the characteristics
of the guide wire process in TACE surgery, replaced the
branches of the Association LSTM (Long Short-Term
Memory) algorithm and modified some settings, finally
proposed a new framework for guide wire endpoint and
state analysis in continuous X-ray images. Quantitative and
qualitative analytical evaluations on a dataset consisting of
389 X-ray sequences from 48 patients show that the proposed
framework significantly outperforms other existing frame-
works, and the experimental results outperform previously
published state-of-the-art results for this task. The proposed
framework addresses the problem of real-time positioning of
guidewires in continuous images, achieving state-of-the-art
performance. At the same time, it is also expected to be
extended to other interventional procedures, so as to realize
robot-assisted interventional procedures.

Introduction

Advanced liver cancer greatly threatens human health and is
the biggest killer of humans(Organization et al. 2022). How-
ever, the surgery has gradually exposed problems in safety
and flexibility (Andreassi et al. 2016; Klein et al. 2015;
Klein and Campos 2017; Yin et al. 2015). The keypoint lo-
calization of surgical instruments plays a weighty role in
computer-assisted interventions. From the keypoint localiza-
tion results, the pose of the instrument can be estimated and
the use status of the instrument can also be inferred. The
most important surgical instrument used in transcatheter ar-
terial chemoembolization (TACE) is the guidewire. During
the intervention, the guidewire is observed and navigated un-
der the real-time fluoroscopy images, as shown in 1. The
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endpoint is the most meaningful keypoint of the guidewire,
and it is of great significance to localize the guidewire end-
point in real-time.It could be applied in computer-assisted
interventions to help computers understand the surgical pro-
cess of TACE in real-time. To deliver the guidewire to the
desired coronary artery, real-time fluoroscopy images are
used for observation and navigation. As shown in 1,The two
ends of the visible part of the guide wire correspond to the
two end points respectively,one is the real endpoint of the
guidewire and the other is the endpoint of the radiopaque
material. These two points are very similar in appearance
in fluoroscopy images, so how to correctly identify the real
guidewire endpoint from these two points is one of the diffi-
culties of the guidewire endpoint localization task.

Compared with the keypoint localization tasks of other
surgical instruments, the challenges of guidewire endpoint
localization in fluoroscopy images lie in:

» Simple appearance of the guidewire: Simple appearance
means there will be more similar objects (such as rib out-
lines) in fluoroscopy images.

* The low contrast of the slender guidewire structure.

* Small size of visible part: Only a 3cm tip of the guidewire
is with the radiopaque material coating and visible. Other
parts of the guidewire are almost invisible.

Current surgical instrument key point localization algo-
rithms mainly focus on instrument localization in a single
image. However, during interventional procedures, all that is
seen is continuous images. Therefore, inspired by (Lu, Lu,
and Tang 2017a) and taking full advantage of the rich tempo-
ral information inherent in video data, we propose a frame-
work for guidewire endpoint localization in continuous im-
ages, a straightforward solution is to introduce Association
LSTM, which can fully learn Compared with ordinary RNN,
the temporal information in video sequences can perform
better in longer sequences. At the same time, we replace the
SSD algorithm with the YOLOVS algorithm. Therefore, our
method is mainly composed of YOLOVS static target detec-
tion algorithm and LSTM. Our Method is elaborately com-
pared with other comparable keypoint localization methods
on the TAGL dataset. The experimental results show that our
method achieves state-of-the-art performance for guidewire
endpoint localization.
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Figure 1: The structure diagram of the guidewire.

Related Work
Duidewire Endpoint Lolization

In recent years, there have been many studies on surgical in-
struments, including segmentation (Garcia-Peraza-Herrera
et al. 2017; Zhou et al. 2021a), detection (Alvar and Baji¢
2018a; Sarikaya, Corso, and Guru 2017; Sznitman et al.
2011; Richa et al. 2011), and also keypoint localization
(Li et al. 2021; Sznitman et al. 2012; Laina et al. 2017,
Rieke et al. 2016; Li et al. 2022; Kurmann et al. 2017).The
guidewire endpoint localization task can be regarded as a
keypoint localization task of the surgical instrument. The ex-
isting keypoint localization methods fall into two categories.
The first category is the traditional computer vision algo-
rithms (Reiter, Allen, and Zhao 2012; Sznitman, Becker, and
Fua 2014; Du et al. 2018). The methods of this category
extract hand-crafted features from keypoints to learn the
appearance templates, and detect or track the instrument’s
parts using the learned templates. In recent years, with the
extensive application of deep learning methods in medical
images, some methods of using deep CNNs to localize the
keypoints of the surgical instrument have emerged (Li et al.
2022, 2021; Zhou et al. 2021b; Du et al. 2018). Since the
deep learning methods can extract the high-level semantic
information in images, their localization accuracy is greatly
improved compared with the traditional methods. However,
there are some problems in the direct use of the existing key-
point localization methods for multi-guidewire endpoint lo-
calization: In these studies, surgeries are basically laparo-
scopic surgery or retinal surgery. Their surgical instruments
are rigid bodies, so there is a relatively fixed positional re-
lationship between the keypoints, which also makes some
keypoint localization methods unsuitable for the guidewire
endpoint localization(Du et al. 2018; Li et al. 2021).

Guidewire Detectionin in Continuous Images

Accomplishing real-time multi-guidewire endpoint localiza-
tion means the localization is carried out on consecutive flu-
oroscopy images. Associating multiple detection results in
successive frames is the mainstream way for multiple ob-
ject tracking (MOT) called tracking-by-detection.In recent
years, some methods have emerged to solve the object track-
ing task by combining the context information contained in
consecutive frames with object detectors. Recurrent YOLO
(Alvar and Baji¢ 2018b) proposed to send the output of
the YOLO detector (Redmon and Farhadi 2018) to a Long

Short-Term Memory (LSTM), which is used to improve the
detection results by learning the context information. For
Recurrent YOLO, it is necessary to prepare additional con-
tinuous frame data to train the LSTM. MV-YOLO (Alvar
and Baji¢ 2018a) is designed for compressed-domain data,
which contains Motion Vector (MV) information.The final
tracking result can be obtained by combining the above re-
sults. These methods are flawed, we not only have to locate
and classify the guidewire endpoints, but also associate fea-
tures to represent each output object.

Method

In this project, we utilize the Association LSTM (ALSTM)
model (Lu, Lu, and Tang 2017b) as the baseline for address-
ing sequential association tasks. The ALSTM is a variant of
the Long Short-Term Memory (LSTM) network that intro-
duces an associative memory module to store and retrieve
information from past time steps. This allows the ALSTM
to capture long-term dependencies in the data, improving its
ability to learn complex patterns. In addition, the ALSTM
incorporates a self-attention mechanism that allows the net-
work to weight the importance of different input features at
each time step, further enhancing its performance. Overall,
the ALSTM offers a powerful and flexible approach for tack-
ling sequential association tasks.

In summary, the main focus of ALSTM is to develop a
long short-term memory (LSTM) network that can jointly
perform object regression and object association in video
object detection. To achieve this, the LSTM receives spa-
tial information from input frames and applies the Single
Shot Detector (SSD) to extract objects in the frames. The
SSD produces a location-score vector for each detected ob-
ject, as well as a fixed-size descriptor using region of inter-
est (Rol) pooling. These are concatenated and stacked with
past frames to form a frame-level tensor, which is fed into
the LSTM network. The LSTM outputs improved predic-
tions for the current frame with respect to the ground truth,
including object locations, category scores, and association
features. The network is designed to solve the object regres-
sion and object association tasks jointly, using carefully de-
signed loss functions that consider the accuracy of object
locations and class scores, as well as smoothness constraints
across consecutive frames and association error based on dot
products between normalized association features.

The final objective function combines the regression and
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Figure 2: Our LSTM architecture in detail.

association loss functions, weighted by a hyperparameter .
The LSTM is trained using both fully labeled and weakly la-
beled datasets, and the batch normalization technique is used
to accelerate the training process and normalize output fea-
tures. The resulting network is able to accurately regress ob-
ject locations and scores, and associate objects across multi-
ple frames. Regression loss function consists of three com-
ponents:

["reg = Z (Lconf (Ca C*) + )‘Lloc(la g)) +a-Lomooth (1)

The first two terms are the object regression error, where the
localization loss Llocis a smooth L1 loss between the pre-
dicted box (1) and ground truth box (g). The confidence loss
Lconf is the softmax loss over multiple classes confidences ¢
toward ground truth score vector c. The third terms is to ap-
ply the smoothness constraint across consecutive time-steps
to regularize the LSTM model.
The margin contrastive loss function:
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where 0;;, € 0 1 is an indicator, §;; = 1if and only if object
iin frame ¢ — 1 is associated with j*" object in frame ¢, they
have the smallest distance among all pairs. - is a dot product
operation.

In this paper, we improved upon the original Associa-
tion LSTM (ALSTM) network by replacing the SSD de-
tector with YOLOVS (Yan et al. 2021)for extracting objects
from the input frames. Our LSTM architecture in Figure?2.
YOLOVS is a state-of-the-art object detection method that
combines the strengths of multiple detection approaches to
achieve high accuracy and speed performance. In our ex-
periments, we found that using YOLOVS for object de-
tection in ALSTM significantly improved the performance
of the network for detecting guidewire endpoints. Our re-
sults show that our modified ALSTM network outperformed

the original ALSTM network in detecting guidewire end-
points.Overall, the use of YOLOVS in ALSTM demonstrates
the flexibility of the network to incorporate different object
detection methods, and highlights the potential for further
improvements in the performance of ALSTM for various ob-
ject detection tasks.

Experiments
Datasets

To evaluate the performance of our proposed method for
interventional guidewire localization in TACE (Transarte-
rial Chemoembolization) procedures(Li et al. 2021), we
have collected a dataset of fluoroscopy images taken dur-
ing these procedures. The dataset, called the TACE Inter-
vention Guidewire Localization (TIGL) dataset, contains 35
sequences from 11 subjects. All the video were collected
from the same clinical center and were captured using the
Siemens Artis zee III ceiling system with a flat panel de-
tector. The frame rate of the images is approximately 8
FPS, and each image has a resolution of 512 x 512 pix-
els. guidewire in video were manually labeled with bound-
ing boxes and coordinates for their two endpoints. The im-
ages were divided into a training set (18 sequences) and a
testing set (17 sequences). The TIGL dataset includes im-
ages from all stages of TACE procedures, including the an-
giography phase, guidewire delivery phase, and balloon/s-
tent placement phase. These images may contain various
sources of interference, such as contrast agents and stents,
which makes the dataset more representative of real-world
conditions.

Implementation Detail

In the TACE interventional procedure, we utilized the
YOLOVS technology to detect the endpoints of the
guidewire. To extract features, we utilized four feature



Table 1: Comparison Results of Three Dection Methods

PCK5(%) PCK~,(%) PCKo(%)
Method
Real end RP end Real end RP end Real end RP end
Ours 81.45 90.26 87.05 92.51 88.53 92.87
FGFA 64.89 78.14 79.68 86.48 84.08 89.13
STMM 78.12 86.73 87.36 88.36 85.68 91.04
MANet 83.62 88.32 84.97 88.73 87.59 91.28

maps.These feature maps were chosen based on their acti-
vation to high confidence objects in test sets using a pre-
trained YOLOvVS model. The training process involved sam-
pling video snippets and training a two-layer LSTM model
using back-propagation through time and RMSProp with a
learning rate of 0.0003 and a decay rate of 0.85 for 200
epochs. The LSTM models used two-layer stateful LSTMs
with 150 hidden units for state estimation and 300 hidden
units for data association. The network was implemented us-
ing Pytorch and optimization was performed using the SGD
optimizer. Data augmentation techniques, including random
grayscale adjustment, random contrast ratio, and random
scaling, were applied to the input image. The training pro-
cess took about 12 hours on an NVIDIA Titan XP for 100
epochs and used all the training samples, with 200 samples
randomly selected from the testing set as the validation set
and the remaining 841 samples used for testing.

Evaluation Metric

In this paper, the evaluation index of the experiment is based
on the OKS(Li et al. 2022) evaluation index.The evaluation
metric used in this study for multi-guidewire endpoint de-
tection is the Average Precision Percentage of Correct Key-
points (APPCK).The OKS is simplified by setting the stan-
dard deviation of each keypoint and the scale of the object
as constants, and the localization is considered successful
when the distance between the predicted and ground-truth
keypoints is less than a threshold. Three thresholds are used
in this study: 5 pixels, 7 pixels, and 9 pixels, resulting in AP-
PCK 5, APPCK 7, and APPCK 9, respectively. This evalua-
tion metric allows for the analysis of the localization perfor-
mance on each keypoint separately and provides an intuitive
way to evaluate the overall performance.

O’CSguidewire = Z eXd—d?/C% C= 252K2 3)

Therefore, for guidewires, the k; in OKS can be set as a con-
stant k;. Besides, we assume that the scale of the guidewire
is similar in different images so that s in OKS can also be set
as a constant S. Since all keypoints in the dataset are visible,
the d(vi >0) can be set as 1. After the above simplifications,
the OKS for guidewires will degenerate into a function in-
versely proportional to distance d;.

After a series of simplifications, a threshold is set for each
d;, and when d; is less than this threshold, the localization is

considered successful, making the OKS similar to the metric
named Percentage of Correct Keypoints (PCK). PCK also
sets a threshold for each keypoint and reports the percentage
of localization errors that less than the threshold.

Overall Results

By comparing our method with other dectetion methods on
the test set, we demonstrate that our method can achieve fa-
vorable dectectino performance, as shown in Table 1. The
comparison experiments are carried out in two experiment
modes. Three methods are applied in comparison.

In Tablel, Our method and MANet obtain similar de-
tection results, while FGFA has the worst detection result.
These detection performances are expected. However, since
the guidewire detection task is not complicated, all methods
achieve good detection results, and their gap is not obvious.
As for localization results, Our Method achieve best detec-
tion results.
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