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Abstract

The advantages of automatic end-to-end feature extraction
by graph neural networks help analyze property caused by
different chemical structure. In particular, different lengths
of alkane chains, despite their similar chemical composi-
tion, their different carbon chain lengths, functional groups in
branched chains cause differences in solubility, surface ten-
sion and other chemical properties. Therefore, it is of great
significance to use graph neural networks to study the inter-
action between chemical molecule. Here, we introduced an
interpretable representation based on graph neural networks
for the prediction of molecule interaction to explain physic-
ochemical phenomena. We propose a novel neural network
based approach to address this classic yet challenging graph
problem, aiming to alleviate the computational burden while
preserving a good performance.
Keywords: GNN; molecule interaction; GAT; graph similar-
ity; interpretation

Introduction
Graph-structured data is a ubiquitous structure that can
be find everywhere in the real-world, such as social net-
works, chemical molecule, and protein-target interactions.
Recently, Graph Neural Networks have received consider-
able attention on a wide variety of tasks. The Categories of
data that can be processed also expand from Euclidean dis-
tance to hyperbolic data. The interaction between molecules
determines the physical and chemical properties of many
substances and helps to explain the common physicochem-
ical phenomena in life. But chemical modeling, theoretical
calculations, and other methods for analyzing the interac-
tions between molecules is a very time-consuming task.

Chemical molecular structure diagram is a typical type of
non-Euclidean data, graph neural networks used to solve the
analysis of non-Euclidean distance has long been studied.
This method can effectively guide the synthesis and devel-
opment of new drug molecules, study the specific effect of
drugs-targeted molecules, and find new catalysts for chem-
ical production processes. With the deepening of research
problems, the research on graph neural networks has also
developed, and graph attention neural networks and graph
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convolutional networks have also been developed to solve
different problems. GAT (Veličković et al., 2018) is a type
of GNN in spatial domain that introduces an attention mech-
anism to solve the disadvantage that GCN cannot be applied
to dynamic graphs. Using the interaction of the drug with
the targeted molecule, SkipGNN (Sun et al, 2020) specifies
a neural architecture in which neural information is trans-
mitted not only through direct interactions, but also through
similarity in secondary interactions, known as jump simi-
larity. Importantly, while the principle of jumping similar-
ity governs many types of molecular interaction networks,
GNN methods fail to capture this principle.

Graph neural networks are of great significance for fea-
ture extraction of non-Euclidean data. The core of graph
neural networks lies in locality, aggregation, and composi-
tion. The expression learning of graph node features is the
core of graph neural network feature extraction. The sim-
ilarity of two vectors can be expressed in terms of cosine
similarity, etc. Due to the disordered and mobile nature of
graph nodes, the graph is required to maintain isomorphism-
perserving translation, and there are multiple sequential or-
der plans for the same graph. The node features in the graph
neural network can be calculated and updated through mul-
tiple rounds of neighbor message diffusion, that is, Message
Passing, and after a certain round of message passing/up-
date, the feature values of the nodes will tend to converge,
and then update, the feature values will remain unchanged
and enter a steady state. GNNs are divided into two cat-
egories: Spatial, which performs node embedding updates
through message exchange, and Spectrum, which is pro-
cessed into the frequency domain through Fourier trans-
forms and then inversely transformed.

A deep graph similarity learning model SimGNN is pro-
posed in (Bai et al. 2019a) which also aims to learn similar-
ity for chemical compounds as one of the tasks. Instead of
using sub-graphs or other explicit features, the model adopts
GCNs to learn node-level embeddings, which are fed into
an attention module after multiple layers of GCNs to gen-
erate the graph-level embeddings. Then a neural tensor net-
work (NTN) (Socher et al. 2013) is used to model the rela-
tion between two graph-level embeddings, and the output of
the NTN is used together with the pairwise node embedding
comparison output in the fully connected layers for predict-



ing the graph edit distance between the two graphs.
Though GNN-based methods are theoretically superior to

SMILES-based methods in learning molecule structure, they
are limited to designing fresh and delicate GNN architec-
tures while ignoring the essence of molecule representation
learning, which is generalization ability.

We propose a new network framework based on the Graph
attention mechanism, which uses the multi-attention to ex-
tract the intermolecular interactions, hoping that the model
can learn the difference between the three types of forces
based on the same attention mechanism, and then combine
different forces as knowledge, and then predict the interac-
tion between the two molecules through similarity score.
We conduct extensive experimental studies on both tasks,
and the results demonstrate the outstanding performance of
our Prox-GNN by comparison with baseline method. Our
work will help reduce the computational cost compared to
the previously widely used density functional theory calcu-
lation methods, thus effectively advancing the study of inter-
molecular interactions, molecular property prediction, and
contributing to experimental and theoretical studies.

Related work
For the prediction of chemical properties, many ML meth-
ods had been developed. The majority of the studies have
made Graph Neural Networks the tool of choice. Three main
categorization based on which model architecture has been
used: (1) graph embedding based methods; (2) graph neural
networks based models; (3) deep graph kernels

Actually, the message exchange of spatial GNN is a sim-
ple matrix multiplication of node embeddings and adjacency
matrices. GCN (Welling et al., 2016) uses the Laplace oper-
ator and Fourier transform, sharing the connection relation-
ship between nodes and effectively extracting the character-
istics of the graph. GNN are often shallow to avoid over-
smooting. GraphSAGE (Hamilton et al., 2017) implements
inductive learning by learning the aggregate function: mean,
LSTM, and pooling aggregator. GAT proposes to take atten-
tion to make neighbors play different roles in aggregation
(Casanova A et al., 2017). Introducing adaptive Knowledge
Distillation in GNN (Guo et al., 2022) can boosting knowl-
edge transfer. The Graph Matching Networks (GMNs) com-
pute a similarity score through a cross-graph attention mech-
anism to associate nodes across graphs and identify differ-
ences.

Graph similarity learning. The nodes of a graph can be
divided into two disjoint sets, i.e., labeled and unlabeled.
The goal of node classification is to predict unlabeled la-
bels based on the learning of labeled nodes. Node features
learned in graph classification task for node classification. A
graphical representation of chemical molecules can lighten
the need for feature engineering. Mapping nodes into an em-
bedding space is potentially used as a downstream predic-
tion. Node similarity can be considered from the following
aspects: whether two nodes are connected or not, whether

there are shared neighbor nodes, and whether there are simi-
lar structural representations. Similarity can be evaluated by
K-L divergence, cosine, distance, et al method. Siamese (Le-
cun et el., 2005) embeds pairs of data into the same vec-
tor space through weight sharing, and calculates similarity
by calculating vector distances. The representation of each
graph by this method is calculated separately, and the inter-
action information between the graphs is lacking. SimGNN
(Bai et al. 2019a) first formulates graph similarity learn-
ing as a regression task, where its GCN and attention lay-
ers are supervised by GED scores solved by A*. They ex-
tends their previous work by processing a multi-scale node-
wise similarity map using CNNs. It has been proposed that
the cross-graph attention mechanism is used to interact with
graph information in the graph embedding process, to im-
prove the representation ability of embedding. SkipGNN has
jump similarity, which not only by aggregating information
from direct interactions, but also by information from sec-
ondary interactions.

Embedding method. Generating embeddings for every
node in the network to capture the node’s local network
topology. A popular approach is to use random walks with a
skip-gram model, such as DeepWalk, node2vec, and LINE.
The use of the random walk algorithm enables flexible and
randomly defined integration of local and global information
of nodes. Node2vector makes the neighbors of adjacent net-
works after node embedding also have similar coordinates in
the feature space. The other popular approach leverages the
spectral graph theory to generate a spectral embedding such
as spectral clustering. The generated node embeddings are
then fed into a decoder classifier to predict the link existing
probability. SimGNN using mutual information to enhanc-
ing the interaction of two graph. The generic framework for
the graphs embedding is:
• Mapping function to map nodes from graph domain to

embedding domain
• Information extractor for extracting the key information

I to be retained in the graph domain
• Reconstructor that reconstructs the extracted graph infor-

mation I using embeddings in the embedding domain
• Learning the parameters involved in the mapping and re-

constructors by optimizing the objectives based on the
extracted information I and reconstructed information I’.

The time complexity is usually still polynomial or even
subexponential in the number of nodes in the graphs, such
as A*-Beamsearch (Beam), Hungarian,VJ, etc.

Aggregation function. The symmetry of the aggregation
function ensures that the neural network model can be
trained and applied to an arbitrary sequence of vertex neigh-
boring feature sets. The symmetry of the aggregation func-
tion ensures that the neural network model can be trained
and applied to an arbitrary sequence of vertex neighbor-
ing feature sets. Compared to mean aggregators, LSTMs
have a stronger expressive power. However, LSTMs are not
pairwise, i.e., they do not have permutation invariant. In
skipGNN, an iterative fusion scheme with aggregation gates



Figure 1: Flowchart of the our framework.

is designed to combine the similarity information of both.
Instead of simply concatenating the output node embedding
from the GNN output of the original graph G that captures
direct similarity and the GNN output of the skip graph G
that captures skip similarity, the two GNNs on G and G are
allowed to interact with each other iteratively through prop-
agation rules.

Dynamic interaction. Recent related works on graph-based
methods for human motion prediction include(Alahi et al.,
2016) where the graph is not learned but is based on prox-
imity and (Le et al., 2017) tries to cluster agents into roles.
A number of recent works (Monti et al., 2017;Duan et al.,
2017; Hoshen, 2017;Veličković et al., 2018) parameterize
messages in GNNs with a soft attention mechanism (Luong
et al., 2015). This equips these models with the ability to
focus on specific interactions with neighbors when aggre-
gating messages.

Proposed Solution
Our task is to explore two problems: estimating the proper-
ties of molecule and predicting future states when different
two molecules interact.

Here, we devised a simple method to calculate the sim-
ilarity of two graphs in order to initially determine the in-
teraction between two chemical molecules from their solu-
bility data. This model in Figure 1 is more interpretable and
generalizable than the SimGNN model for calculating inter-
molecular forces of proteins.

Now, we introduce our proposed approach Prox-GNN
in detail, which is a new neural network architecture ca-
pable of directly modeling molecule as graph, and show
that this approach outperforms state-of-the-art deep learn-
ing models on two molecules similarity prediction bench-
marks. Using SMILES code, it is transformed into our model
and further extracts the features of the nodes into one-hot
vectors. SMILES based on the chemical molecule in Prox-
GNN is used as input to construct the molecular graph of the

molecule and extract atomic features by open source code
RDKit, and this graph structure data is input to the GCN
layer learn the potential patterns in the graph feature repre-
sentation. The intermolecular interaction prediction problem
is then converted to a regression task where the input is a pair
of molecule representations, and the output is a continuous
value reflecting the similarity score of the pair.

After that the graph level embedding is updated by the at-
tention module. Note that here we introduce more attention
layers to avoid GCN over-smoothing the molecular node
features.

Vanilla GNN. The trivial way of handling the dynamic con-
dition is that when the graph is modified, a complete feed-
forward pass is called for all nodes in the new graph. How-
ever, such practice involves redundant computation, which is
discussed as follows. We denote n as the number of nodes,
F as embedding dimensions, and K as the number of GNN
layers.

Graph convolutional networks. GCN is a inductive
method for inference, as it is graph representation-invariant.
Graph convolution operates on the representation of a node,
which is denoted as un ∈ RD, and is defined as follows:
conv(un) = f1(

∑
m ∈ N(n) 1√

dndm
umW

(l)
1 +b

(l)
1 ) where

N(n) is the set of the first-order neighbors of node n plus
n itself, dn is the degree of node n plus 1,W l∈Dl×Dl+1

1
is the weight matrix associated with the l-th GCN layer,
bl1 ∈ RDl+1

is the bias, and f1(·) is an activation func-
tion such as ReLU(x) = max(0, x). Intuitively, the graph
convolution operation aggregates the features from the first-
order neighbors of the node.

The potential issue of using a deep GCN architecture is
that the embeddings may lose subtle patterns in local neigh-
borhood after aggregating neighbors multiple times. The is-
sue is especially severe when the two graphs are very similar,
and the differences mainly lie in small local substructures.

Therefore, in our model, only one layer of GCN is re-
tained for generalizing molecular information at graph level.



Attention block for graph-level embedding. Given node-
level embeddings, the graph-level embedding is obtained
through attention mechanism. To extract more feature from
graph-structured data, we add double-layer attention for
keep the local substructure for molecule.

Graph attention mechanism. Both GCN and GAT aggre-
gate the features of neighboring vertices to the central ver-
tex (an aggregate operation) and use the local stationary on
the graph to learn the new vertex feature representation. The
difference is that GCN uses Laplace matrix and GAT uses
attention coefficients. To some extent, GAT is stronger be-
cause the correlation between vertex features is better inte-
grated into the model. As with all attention mechanisms, the
GAT is calculated in two steps.

Firstly, calculate the attention coefficient (attention coef-
ficient). For vertex i, compute the similarity coefficient be-
tween its neighbors and itself one by one

αij =
exp(LeakyReLU(eij)∑

k∈Ni
exp(LeakyReLU(eik))

In the second step, the features are weighted and aggre-
gated according to the computed attention coefficients.

h
′

i = σ(
∑

j∈Ni
αijWhj)

h
′

i(K) =
K

||
k=1

σ(
∑

j∈Ni
αk
ijW

khj)

Neural Tensor Networks. Graph-graph interaction is model
by Neural Tensor Networks(NTN) as follows:

g(hi, hj) = f3(h
T
i W

[1:K]
3 hj + V [hi

hj
] + b3)

whereW [1:K]
3 ∈ RK is a bias vector, and f3(·) is an acti-

vation function. K is a hyperameter controlling the number
of interaction (similarity) scores produced by the model for
each graph embedding pair. Module frame can be find in fig-
ure2. Introducing NTN module that performance can be im-
proved when entities are represented as an average of their
constituting word vectors. This allows sharing of statistical
strength.

Figure 2: Neural Tensor Network block.

Experiments
Datasets
We evaluate our Prox-GNN model on three challenging real-
world datasets: ESOL, LIPO, and AIDS. Each set contains
thousands of molecule SMILES as well as binary labels in-
dicating the property of interest.

ESOL is a small dataset containing water solubility data
for 1128 compounds. This dataset can be used to train mod-
els to predict solubility based on chemical molecular struc-
tures (encoded in SMILES strings) that do not contain 3D
coordinates of atoms.

Lipophilicity is an important characteristic of drug
molecules that affects membrane permeability and solubil-
ity. This dataset, from the ChEMBL database, provides ex-
perimental results on the octanol/water partition coefficient
(logD at pH 7.4) for 4200 compounds.

AIDS is a collection of antivirus screen chemical com-
pounds from the Developmental Therapeutics Program at
NCI/NIH7, and has been used in several existing works on
graph similarity search. It contains 42,687 chemical com-
pound structures with Hydrogen atoms omitted. We select
700 graphs, each of which has 10 or less than 10 nodes.

Implementation Details
To demonstrate our model, we test it on three graph datasets
and compare it with state-of-the-art methods on graph neu-
ral networks. We convert the SMILES code to its corre-
sponding molecular graph and extract atomic features using
the open-source chemical informatics software RDKit (Lan-
drum, 2006). For the model architecture, we set the number
of GCN layers to 1, and use ReLU as the activation function.
For the initial node representations, we adopt the onehot en-
coding scheme for the input data reflecting the node type.
The output dimensions for the layer of GCN are 128. We add
2 GAT module with two-head, the output dimensions for the
1st and 2nd layer of GAT are 64 and 32, respectively. For the
NTN layer, We set K to 16. We use 2 fully connected layers
to reduce the dimension of the concatenated results from the
NTN module, from 16 to 16, and 16 to 1. More parameter
details can be find in the table 1. We conduct all the experi-
ments on a single machine with an Intel i7-12700h CPU and
one Nvidia RTX 3070Ti GPU.

Table 1: Hyper-parameters for different graph neural
network variants used in our models.

Hyper-parameters Setting
Learning rate 0.001

Batch size 128
Optimizer Adam

GCN layers 1
GAT layers 2
Multi-head 2
FC layers 2

Evaluation Metrics
The following metrics are used to evaluate all the models:
The mean squared error (MSE = 1

n

∑n
i=1 (y − ŷ)

2
) mea-

sures the average squared difference between the computed
similarities and the ground-truth similarities. We also adopt
the following metrics to evaluate the ranking results. Spear-
man’s Rank Correlation Coefficient and Kendall’s Rank



Correlation Coefficient measure how well the predicted
ranking results match the true ranking results. ρ and τ evalu-
ates the global ranking results instead of focusing on the top
k results.
Spearman’s Rank Correlation Coefficient:

ρ =
∑

i(xi−y)√∑
i (xi−x)2

∑
i (yi−y)2

Kendall’s Rank Correlation Coefficient:
τ = nc−nd√

(n0−n1)(n0−n2)

where nc is the number of concordant pairs in a two-
comparison pair, nd is the number of discordant pairs in
two-comparison pairs, n0 is the total number of pairs in two-
comparison pairs, which is n0(n0−1)/2, and n is the sample
size, n1 is the number of invariant pairs in which the value
of X is invariant, n2 is the number of invariant pairs in which
the value of y is invariant.

The results of the correlation coefficient evaluation are
shown in Table 2, where it can be seen that our model has
a higher Spearman coefficient compared to the other models
and shows a higher intermolecular interaction.

Table 2: Evalution of Similarity relation based on Spear-
man and Kendalltau

Model ρ τ

GMN 0.672±0.036 0.497±0.032
GraphSim 0.849±0.008 0.693±0.010
SimGNN 0.824±0.009 0.665±0.011

Proposed model 0.8967±0.007 0.600±0.010

Ablation Study: How well Attention works?
To analyze our method in depth, ablation studies are con-
ducted to evaluate the effect of each individual component
and the results on the ESOL, LIPO, AIDS datasets are re-
ported in Table 3.

Effect of histogram. To analyze the effect of histogram,
we compare our method with the model with histogram.
The experimental results prove that the histogram makes the
model worse, which may be due to the fact that this statis-
tical method tends to ignore local features although it can
extract the features of the layers.

Effect of attention. We also conducted additional experi-
ments on SMILES string dataset with ablation considera-
tion. We analyzed the attribution of the attention layer, and
here we used a double layer of attention. The experimental
results show that adding GAT block can effectively prevent
the over-smoothing caused by GCN, extract molecular detail
features, and improve the model performance.

Comparison with State-Of-The-Art Methods
In this section, we compare the proposed method with five
state-of-art methods on AIDS databases in table 4. We con-

Table 3: Predicition performance on the three datasets,
sorted by MSE(10−3)

Methods ESOL LIPO AIDS
SimGNN 3.29293 1.04566 0.33244

SimGNN-h 2.44216 1.00012 0.27548
Prox-GNN+h 2.12896 1.02549 0.30678
Prox-GNN 2.03074 0.99405 0.27211

Baseline error 3.59432 1.0839 0.54748

sider both the state-of-the-art similarity computation meth-
ods and baselines using neural networks.

To ensure consistency, all neural network models use
three layer GCN for node embeddings except for Prox-
GNN, and to demonstrate the flexibility of our framework,
we show the performance improvement of Prox-GNN by re-
moving historm and adding with the more powerful Atten-
tion’s node embedding methods.

Table 4: Comparison experiment conducted on AIDS
dataset

Methods MSE (10−3)
SGNN(FCMax) 3.114 ± 0.114

SGNN(BiLSTM) 1.422 ± 0.044
GMN (Li, et all.,2019) 4.610 ± 0.365

GSimGNN (Bai, et al. 2020) 1.919 ± 0.060
Baseline (Bai, et al. 2019) 1.376 ± 0.066

Proposed model 0.797 ± 0.112

Results and Analysis
The evaluation of ESOL, LIPO, and AIDS dataset in line
with is presented in Dataset section, where the problem
is defined as evaluate the similarity of the graph from all
graphs in the training set. Our regression model Prox-GNN
has comparable performance against state-of-the-art with
a simplified pipeline, and better performs among other
models.

Conclusion
In this paper, we have presented a Prox-GNN model that
consists of three main block: GCN, GAT, NTN module.
Driven by the attention meachanism that is employed in
the backbone network, our model is able to extract more
features. Thanks to the multi-headed attention, more finer
molecular structures can be find. However, due to time con-
straints, we did not analyze attention at different layers,
attention at the graph level, and visualization of attention
weights. In the future, we expect the model to extract more
chemical information to make graph neural networks ac-
cording to interpretability.
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