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Abstract
Listening to English audio is a good way to practice English
listening. Although translation subtitles are widely used,
there are relatively few audio translation tools on the market.
To the best of my knowledge, there is currently no sentence-
level Chinese-English audio translation tool, that is, there is
no mature audio translation tool for one sentence of English
and one sentence of Chinese. To this end, we developed
a Sentence-level Chinese-English Audio Fusion system to
fill this market gap. In view of the powerful capabilities of
deep learning, in this study, we develop a cascaded audio
translation system based on deep learning techniques. It con-
tains three modules: speech recognition, machine translation,
and speech generation. We use the Wav2vec 2.0 framework
for speech recognition, the MarianMT model for machine
translation, and the VITS model for speech synthesis.
After preliminary experiments, the model has satisfactory
accuracy and impressive results. The code is available
at: https://github.com/CCscenery/Sentence-level-Chinese-
English-Audio-Fusion-Based-on-Deep-Learning/tree/main

Introduction
In today’s world, text translation technology has become

an essential tool for many individuals. It allows us to eas-
ily understand written content in a language that is not our
own, making it a valuable resource for reading and writing.
However, text-to-text translation has its limitations when it
comes to developing speaking and listening skills in a for-
eign language. This is where Speech-to-speech translation
comes into play. Translating spoken language from one lan-
guage to another, allows us to practice our listening and
speaking skills in a more authentic and immersive. It gives
us the opportunity to hear native speakers conversing and al-
lows us to practice our own speaking in a way that is more
similar to a real-life conversation. In particular, we are inter-
ested in studying English-speech to Chinese-speech transla-
tion as a way to improve our listening skills in our spare
time. Overall, Speech-to-speech translation is a valuable
tool for language learners looking to improve their speak-
ing and listening abilities in a foreign language. In general,
our group believes that Speech-to-speech translation is an
important tool for language learners to improve their for-
eign language spoken and listening abilities, so we want to
implement a speech-to-speech translation system with deep
learning methods.

Speech-to-speech translation (S2ST) aims at translating
speech from one language into speech in another lan-
guage. S2ST technology can not only enable communica-
tion between people speaking different languages but also
help knowledge sharing across the world. Generally, S2ST
mainly includes an end-to-end system and a cascade system.

Recently, work on S2ST without relying on intermediate
text representation is emerging, such as end-to-end direct
S2ST (Kano, Sakti, and Nakamura 2021) and cascade S2ST
based on discrete speech representation (Tjandra, Sakti, and
Nakamura 2019). However, as of today, publicly available
corpora directly suitable for such research are extremely
limited.

However, the traditional cascading method is mostly used
in industry. Its frame is shown in Figure 1. Generally, S2ST
can be realized through the connection of three systems:
automatic speech recognition (ASR), machine translation
(MT), and text-to-speech synthesis (TTS) (Lavie et al. 1997)

Figure 1: The Framework for Cascading Speech-to-speech
Translation

• Automatic Speech Recognition (ASR)
Automatic Speech Recognition is a rapidly develop-
ing field that aims to enable computers to automati-
cally transcribe spoken language into text. With a wide
range of applications, including voice-to-text transcrip-
tion for dictation, voice commands for virtual assistants
and smart devices, and language translation, ASR tech-
nology has the potential to significantly improve the effi-
ciency and accuracy of spoken language communication.
ASR systems typically consist of three main compo-
nents: a feature extractor, an acoustic model, and a lan-



guage model. The feature extractor converts the raw
speech signal into a set of numerical features that cap-
ture the characteristics of the speech, such as spectral and
prosodic information. The acoustic model then uses these
features to predict the transcription of the speech, based
on the probability of each possible transcription given the
input features. The language model considers the gram-
matical and structural constraints of the language being
spoken and helps to improve the overall accuracy of the
transcription.
There are two main approaches to ASR: traditional
rule-based systems and modern machine learning-based
systems. Traditional rule-based systems rely on hand-
crafted rules and algorithms to recognize speech, while
machine learning-based systems use data-driven meth-
ods to learn from large amounts of annotated speech
data. In recent years, machine learning-based ASR sys-
tems, particularly those based on deep neural networks
(DNNs), have achieved state-of-the-art performance and
have been widely adopted in the industry.

• Machine Translation (MT)
Machine Translation is the task of automatically translat-
ing text from one language to another. It has a wide range
of applications, including language translation for web-
sites, documents, and messaging applications, as well as
multilingual information retrieval and machine-aided hu-
man translation. Machine translation is mainly divided
into statistical machine translation (SMT) and neural ma-
chine translation (NMT)
Statistical Machine Translation (SMT) is a method for
building machine translation systems that rely on large-
scale language corpora. It effectively reduces reliance on
human intervention, and can flexibly handle language
structure through the use of formalized grammar mod-
els. In recent years, SMT has evolved from word-based
machine translation to phrase-based translation.
Neural Machine Translation (NMT) is a newer machine
translation technology that has emerged in recent years
and has become the mainstream translation technology
in the language translation industry. As a completely new
machine translation model, NMT uses deep learning neu-
ral networks to acquire the mapping relationship between
natural languages and directly translates from the source
language to the target language, effectively avoiding the
complex conversion process in traditional SMT transla-
tion. NMT has also been widely recognized by scholars
for its simplicity, high efficiency, and excellent transla-
tion performance.

• Text-to-speech synthesis (TTS)
Text-to-speech synthesis is a technology that can con-
vert any input text into corresponding speech. There are
both traditional, non-end-to-end methods and the more
popular end-to-end methods based on neural networks
for speech synthesis. Non-end-to-end methods are typ-
ically composed of three parts: a text analysis frontend,
an acoustic model, and a vocoder. First, the text front end
converts the text into a standard input. Then, the acous-
tic model transforms the standard input into intermediate

acoustic features for modeling the long-term structure of
speech. The most common intermediate acoustic features
are spectrograms, vocoder features, or language features.
Finally, the vocoder fills in low-level signal details and
converts the acoustic features into time-domain wave-
form samples. On the other hand, end-to-end synthesis
systems directly input text or phoneme characters and
output audio waveforms. End-to-end systems reduce the
requirement for linguistic knowledge and can be easily
replicated across different languages to implement batch
synthesis systems for dozens or even more languages.
Furthermore, end-to-end speech synthesis systems show
strong and rich expressive capabilities for pronunciation
styles and rhythms.
Thanks to the mature research of each part, the cascading
method will reduce the difficulty of task implementation,
but the control of propagation errors and the loss of par-
alinguistic information are still worthy of research.

Related Work
End-to-end system. The end-to-end system directly
translates from voice to voice. Most recently, researchers
have built one-stage S2ST systems (Jia et al. 2019) that
jointly optimize intermediate text generation and target
speech generation steps (Kano, Sakti, and Nakamura
2021) or further remove the dependency on text com-
pletely (Tjandra, Sakti, and Nakamura 2019) Not rely-
ing on text generation as an intermediate step allows the
systems to support translation into languages that do not
have standard or widely used text writing systems (Zhang
et al. 2021). The advantage of this method is fast, but the
disadvantage is that task modeling is complex and diffi-
cult.
Cascade system.
The Cascade system divides the translation process into
three steps: speech recognition, machine translation, and
speech generation. The task is completed by cascading
these three parts:

• Automatic Speech Recognition (ASR)
Automatic Speech Recognition (ASR) End-to-end (E2E)
automatic speech recognition (ASR) models have re-
ceived increasing attention in recent years, such as con-
nectionist temporal classification (CTC) (Graves et al.
2006), recurrent neural network transducer (RNN-T)
(Graves 2012; Graves, Mohamed, and Hinton 2013),
and attention-based encoder-decoder (AED) (Chorowski
et al. 2014). One of the most appealing aspects of E2E
models is their simplified training procedure compared
to traditional hybrid ASR frameworks.

• Machine Translation (MT)
Machine Translation (MT) Over the past decade, the
state of the art in machine translation has been greatly
improved through the use of neural machine transla-
tion (NMT) (Bachman, Alsharif, and Precup 2014) and
Transformer-based models (Vaswani et al. 2017). These
models often achieve state-of-the-art (SOTA) translation
performance using large-scale corpora (Ott et al. 2018).



Along with the advancement of NMT, consistency train-
ing (Bachman, Alsharif, and Precup 2014) has been
widely adopted and has shown great potential for im-
proving NMT performance. It simply regularizes NMT
model predictions to be invariant to small perturbations
applied to the inputs and hidden states (Chen et al. 2021)
or the model randomness and variance present in the
training process (Wu et al. 2021).

• Text-to-speech synthesis (TTS)
Text-to-speech synthesis (TTS) is a technology that can
convert any input text into corresponding speech. Neural
network-based autoregressive TTS systems have demon-
strated the ability to synthesize realistic speech (Shen
et al. 2018), but their sequential generative process makes
it challenging to fully utilize modern parallel proces-
sors. To address this issue and improve synthesis speed,
several non-autoregressive methods have been proposed.
One such method involves extracting attention maps
from pre-trained autoregressive teacher networks (Ren
et al. 2019) in the text-to-spectrogram generation step,
which aims to reduce the difficulty of learning align-
ments between text and spectrograms. More recently,
likelihood-based methods have further eliminated the
reliance on external aligners by estimating or learning
alignments that maximize the likelihood of target Mel-
spectrograms (Zeng et al. 2020). Additionally, generative
adversarial networks (GANs) (Goodfellow et al. 2020)
have been explored in second-stage models for TTS.
The cascading method sequentially combines the above
three parts. This approach has several advantages:1)It al-
lows for the decoupling of the voice translation task into
separate modules, which makes it easier to design and
optimize each component.2)Both speech recognition and
machine translation have a long history of research and
development, so they have a wealth of mature technolo-
gies that can be leveraged to improve the effectiveness
of speech-to-speech translation. However, cascading sys-
tems also have some drawbacks compared to end-to-end
systems:1)Error propagation: If there is an error in the
output of one module, it will be carried forward to the
next module, potentially leading to further errors down
the line.2)Low translation efficiency: Cascading systems
may not be able to meet the real-time requirements of
certain voice translation tasks due to their relatively slow
processing speed. On the whole, a cascading method is a
useful approach for speech-to-speech translation, but it is
important to consider its limitations and trade-offs when
deciding which method to use.

Proposed Solution
Overall System
We disassemble the model into three parts: ASR, MT,
and TTS. We also divide TTS into Chinese speech syn-
thesis and English speech synthesis. Chinese speech is
our final output, while English speech synthesis is to con-
vert the English text after speech recognition into audio.
The purpose of this is to complete our original intention
of designing this system, that is, one English sentence

corresponds to one Chinese sentence. The advantage of
this is that the output text has punctuation marks. We can
use punctuation marks to split the audio and complete our
sentence-level audio translation. So the general process
of this model is to use wav2vec 2.0 to identify English
audio as English text and then use MarianMT to machine
translate it into Chinese text. Then we use punctuation
marks to segment, and use VITS model and pyttx3 li-
brary to output and splice Chinese and English text sen-
tence by sentence.

Automatic Speech Recognition (ASR)

In the ASR part, we use Wav2vec 2.0. It is a cutting-
edge speech recognition model that has been developed
to effectively convert spoken language into text. The ar-
chitecture of Wav2vec 2.0 is shown in the Figure 2 . It
utilizes transfer learning techniques, which involve us-
ing pre-trained models as a starting point and fine-tuning
them for a specific task, in this case, speech recognition.
This allows for the rapid training and deployment of new
models, making Wav2vec 2.0 a highly efficient and ef-
fective tool for speech-to-text conversion. One of the key
techniques employed by Wav2vec 2.0 is called Masked
Language Modeling (MLM), which was originally intro-
duced in the BERT model. MLM consists of two main
tasks: the contrastive learning task and the quantization
task.

In the contrastive learning task, the model is trained to
identify the true, unmasked feature at a given position
in the input, while simultaneously rejecting unmasked
features at other positions. This helps the model to fo-
cus on the most relevant features for speech recognition,
improving its accuracy and performance. In the quanti-
zation task, the true unmasked features are transformed
into a discrete space, allowing for more efficient process-
ing and representation of the data. To ensure diversity in
this process, the entropy of the averaged softmax distri-
bution is maximized, resulting in the unmasked features
being evenly distributed in the discrete space. Overall,
the combination of these techniques allows Wav2vec 2.0
to achieve impressive results in a speech to text conver-
sion, making it a valuable tool for a wide range of appli-
cations.

Figure 2: The architecture of architecture Wav2vec 2.0



Machine Translation (MT)
In this section, we will introduce the method we used
originally and the method we use now because it is un-
fortunate that although the original method has improved
the score, the actual translation effect may not be good.
We think this is because the parallel corpus is not enough
to support the normal translation effect or for some other
reasons. So we tried to use a larger dataset, but our equip-
ment didn’t support us to train this model. In order to en-
sure the complete functionality of the whole project, we
adopt a new method to use a pre-trained model and ex-
plore the effectiveness of the original method under the
premise of ensuring the integrity of the result.

• Original method
We used the StrokeNet (Wang, Liu, and Zhang 2022)
and the concept of a bidirectional translation model just
like BiBERT (Xu, Van Durme, and Murray 2021) to
ensure full utilization of contextualized embeddings for
En→Zh on the WMT’18 dataset. The dataset consists
of sentences in total from domains including broadcast,
newswire, and web data.
Our model configuration is Transformer and imple-
mented using the Fairseq framework, configuration is a
six-layer transformer architecture with FFN dimension
size 2048 and 4 concerns. We use the 768 embedding di-
mensions to match the dimensions of the pretrained lan-
guage model. The evaluation metric is the commonly to-
kenized BLEU (Papineni et al. 2002) score .

• New method
In this section, we use the output (contextualized embed-
dings) of the last layer of pre-trained language models on
building NMT models and dual translation train as above.
We implemented using a pre-trained Huggingface model
on a smaller En→Zh IWSLT’17 dataset. The dataset con-
sists of 200K parallel sentences in total.
Our model configuration is based on MarianMT model,
which supports fast training and translation. Models were
originally trained by Jörg Tiedemann using the Marian
C++ library, which supports fast training and translation.
All models are transformer encoder-decoders with 6 lay-
ers in each component.
We only use the last layer of the model, introduced layer-
aware attention mechanism to capture compound contex-
tual information from mode. We use it to extracting with
embedded source sentences from the last layer of frozen
pre-trained language models and feed them to an embed-
ding layer of NMT encoders. Instead of randomly initial-
izing the source embedding layers, we use the outputs of
these pre-trained models and do not allow these parame-
ters to be updated during training.
Pre-trained monolingual language models can improve
the performance of machine translation systems, but ma-
chine translation is inherently a bilingual task. We hy-
pothesize that a pre-trained language model with its train-
ing data consists of a mixture of texts from source and
target languages. In other words, we expect source and
target language data to enrich each other’s contextual

information to better facilitate bidirectional translation.
Therefore we use a bilingual pre-trained language model,
called BIBERT.
Therefore, we also use a different from the ordinary one-
way translation model, we use a two-way translation
model, it is, one model can translate En → Zh and Zh
→ En. So our first processing step is mixing source and
target language data.
Text-to-speech synthesis (TTS)
In the TTS part, we use Variational Inference with ad-
versarial learning for end-to-end Text-to-Speech(VITS).
VITS mainly includes three parts: Conditional Varia-
tional AutoEncoder (VAE), alignment estimation gener-
ated from variational inference, and generation of con-
frontation training.

Figure 3: The training procedure of the VITS model

The training procedure is shown in the Figure 3. First, put
the text and code the isolated text into context-sensitive
features through the Text Encoder module. Then, a priori
encoder module is used to obtain a priori distribution (a
hidden variable is predicted based on the condition of text
and speaker identity). At the other end, the input voice
waveform is converted into a linear spectrum without pa-
rameters. After the Poster Encoder module, the output is
also a posterior distribution of hidden variables.
In order to train the model and make the distance between
the generated waveform and the original waveform close,
the following operations are carried out in VITS:

1. Because the output length of the posterior encoder is
the length of the spectrum. The output length of a pri-
ori encoder is the length of the text. In order to cal-
culate the distance between the two prior distributions
and the posterior distribution, the dimensions of the
two modules are aligned first. Since there is no a pos-
teriori encoder when reasoning, we need a time length
predictor to model the process of just dynamic plan-
ning with a time length predictor, send the text en-



coder output to the time length predictor, predict a time
length, and then expand the prior distribution.

2. The features generated by the posterior encoder are
sent to the decoder to generate waveforms, calculate
the Mel spectrum, and calculate L1 loss with the real
spectrum.

3. The duration predictor is based on the VAE structure,
and there will still be a variational lower-bound loss

4. In the GAN training, the discriminator and the gener-
ator have conflicts (the discriminator judges whether
the output is from the decoder or the real waveform)

Figure 4: The inference procedure of the VITS model

The inference procedure is shown in the Figure 4. Text
input is represented by a text encoder, which is divided
into two ways.

Step1 After a priori encoder of the text and resampling,
z (length of the text layer) is obtained

Step2 After the time length predictor, the flow model.
First, sample and generate noise, and then calculate the
duration through the flow model. After the time length
is rounded, the value of the above text prior to encoder
output heavy parameter z is expanded. The expanded z
is the z of the spectral magnitude. After the waveform
generator, the waveform is obtained by sampling step
by step.

Experiments
In the experiment part, we use a pre-trained model for
speech recognition. We mainly discuss machine trans-
lation and speech synthesis, as well as the final overall
model implementation effect.
Dataset

• MT We conduct experiments on the WMT18 Zh-En
benchmark. For the WMT18 Zh-En, the training data
contains 50M sentence pairs. We use the scripts in Moses
to tokenize. We use jieba4 to conduct. Then we apply the
BPE algorithm to Chinese and English separately. For the
WMT17 Zh-En, we conduct 40K BPE operations on Chi-
nese and English joint-BPE in the StrokeNet.

• TTS Since the relevant benchmark datasets are almost
all English datasets, that is, the waveform in the voice
file is used as the training feature, and the English corre-
sponding to the voice is used as the label, there are few
public Chinese datasets for voice synthesis, and there are
fewer training sets with the same voice color. So I un-
packed the voice on the Genshin Impact game to obtain
the voice source file. Because different game characters
have different voice colors, I selected the game character
of Pemont as the voice of the dataset, collected the rel-
evant voice files, and used them as the dataset. In order
to obtain the tag of the corresponding dataset, I first con-
verted the voice file obtained above into text through the
iFLYTEK speech recognition API and used it as the ba-
sic tag. In order to reduce label errors and filter noise and
redundancy in the dataset, manual proofreading is being
carried out to further improve the correspondence and ac-
curacy between the dataset and labels. After the above
steps, 2293 voice data and tags are finally obtained. Ac-
cording to the 4:1 ratio, 1820 of them are used as the
training set and 473 are used as the test set to train the
model.
Setting

• Overall system In addition, we cascaded three modules to
form our model, and we also analyzed the running time
of each module of the model. We divide the audio from
the 30s to 180s into 11 groups and calculate their respec-
tive running time and total time.

• MT For training vanilla NMT models, the decoder in-
put and output embeddings are shared. For the WMT18
Zh-En, we use Adam to train for 50 epochs on the basic
model, with 2048 max tokens per batch, the learning rate
0.0004, weight decay of 0.00002, and dropout ratio 0.1.
We warm up the learning rate for the first 1K steps and
then use the inverse square root scheduler.
For training NMT models with dual translation, we feed
target sentences and expect translations in the source lan-
guage. The rest hyperparameters keep the same as the
vanilla models.
For training NMT models with StrokeNet, each Chi-
nese character is mapped to the corresponding Latinized
stroke sequence. Joint vocabulary is learned from both
source and target texts together. During training, all the



Table 1: The result of MT

MODEL BLUE
basic model 21.2, 57.3/27.9/15.7/9.2

+ dual translation 22.14, 58.4/28.5/16.1/9.6
+ StrokeNet 23.41, 59.5/29.7/17.1/10.2

embeddings and softmax weights are shared. The rest hy-
perparameters keep the same as the vanilla models.

• TTS We set the training epoch to 1434 times, the opti-
mizer to Adam, the learning rate to 0.0002, and the ex-
ponential continuous attenuation. Each epoch is boiled to
the original 0.999875. Before training, the Chinese text
in the tag is preprocessed into Pinyin, so that we can ob-
tain the tones and phonemes of each self. At the same
time, the audio is segmented to obtain the corresponding
spectrum. Finally, we will get the spectrum and the cor-
responding text phoneme input model and then conduct
training.

Result

• MT. For the WMT17 Zh-En, we generate with length
penalty of 1.4 and a beam size of 5. The BLEU scores
are evaluated with multi-blue provided by Moses. We use
the checkpoint with the best validation BLEU for testing.
The result is shown in table1.

• TTS. Since the evaluation index of the speech synthesis
model is a crowdsourcing MOS test, the rater listens to
randomly selected audio samples and scores their natu-
ralness on a 5-point scale of 1 to 5, which has certain
subjectivity. So we invited some students to score the re-
sult of speech synthesis, and the average score was 4.2,
corresponding to better speech synthesis, which can be
heard clearly and smoothly, and students also like Gen-
shin Impact’s voice very much.

• Running time. It can be seen from the Figure5 that the
total duration of audio translation is still linearly and pos-
itively correlated with the duration of input audio, which
is also consistent with our conventional experience.

The total time consumption of the model is mainly con-
centrated on Chinese speech synthesis and speech recog-
nition, as shown in Figure6. If we want to improve the
overall translation speed in the future and strive to move
closer to real-time voice translation, we need to improve
the speed of voice synthesis.

Figure 5: Curve of Total Running Time Changing with Au-
dio Duration

Figure 6: The change curve of each Module time with Audio
Duration

Conclusion
To practice our speaking and listening, we designed
and implemented a sentence-level cascade audio trans-
lation system using deep learning techniques. We divide
the system into three main functional modules: speech
recognition, machine translation, and speech synthesis.
For these three modules, we use Wav2vec 2.0, Mari-
anMT, and VITS respectively. The final effect is very
impressive. In the future, further improving the accuracy
and efficiency of the system will provide greater value to
the majority of foreign language learners.
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