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Abstract

We found that the mel-spectrogram generated by
FastSpeech[15] has shadow and missing mid-to-high
frequencies, which will result in a sound that is too smooth
without emotional ups and downs. We studied the structure
of this model and found that although the Transformer
structure adopted by FastSpeech improves the quality of
synthesized speech and speeds up the synthesis speed, but
the Transformer structure pays too much attention to the
global information. So a certain part of the local information
is ignored and the synthesized sound is too flat. To solve
this problem, we introduce parallel residual block and
convolution block to extract local information. At the same
time we add two linear layers at the end of the decoder to
solve the problem of energy and pitch lossing. This structure
is only used in the training phase. The experiments on the
LJSpeech dataset shows that our model improves the quality
of the sound and speeds up sound synthesis.

Information
Text to speech is a technology that converts text into speech.
Speech synthesis plays an indispensable role in people’s
lives and plays an important role in human-computer inter-
action. With the development of deep learning, speech syn-
thesis technology based on deep learning surpasses tradi-
tional speech synthesis technology in both the quality and
speed of synthesized speech. Some studies have introduced
transformers into experiments to verify that they can gener-
ate more realistic sounds than traditional methods.But there
is still the problem of skipping words and repeating words
in particularly difficult cases, so FastSpeech[15] extracts the
attention alignment in the encoder-decoder model, using a
length regulator to expand the source phoneme sequence to
match the target mel-spectrogram sequence to generate par-
allel mel-spectrogram,thus solved the problem.

However, the mel-spectrogram generated by FastSpeech
has the problem of artifacts, because of the lack of high-
frequency information, and the energy and pitch informa-
tion will be lost during the decoding process. The reason
for this problem is that the attention mechanism focuses on
global information, which makes the resulting image is over-
smoothed, and the language becomes stiff, undulating, and
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lacking in realism. Therefore, we introduced a parallel resid-
ual block and convolution block. Through this method, the
network will pay attention to the parts that it values while
paying attention to the overall situation. For the problem of
energy and pitch loss, we use a linear layer at the end of the
decoder to deal with it, so that the network can predict the
decoded energy and pitch. This is only used in the training
phase, and this part is removed in the testing phase.

We use the LJSpeech dataset to evaluate our model and
previous models and find that our model is faster and more
realistic than FastSpeech. In addition, on this basis, we fur-
ther use a non-autoregressive text-to-waveform generation
model, which has the advantage of complete end-to-end in-
ference and achieves faster inference speed. Our experimen-
tal results show that our model approach is improved, es-
pecially in terms of speech quality. The training pipeline is
much simpler, and the speech synthesis speed of the model
is fast.

Related work
Text to speech (TTS), also known as speech synthesis, aims
to synthesize accurate natural speech given text[18], and is
a hot research topic in the fields of natural language and
deep learning. With the rapid development in the fields of
artificial intelligence, natural language and speech process-
ing, the combination of deep neural networks and TTS has
brought about a significant improvement in the quality of
speech synthesis. In recent years, with the popularization of
information equipment and the advent of the Internet era,
voice services such as voice calls, voice assistants, short
video dubbing and other functions can enrich and facilitate
people’s lives, which is of great significance to promoting
social development.

In the 2nd half of the 18th century, people wanted to cre-
ate machines to synthesize human speech. In the second
half of the 18th century, the Hungarian scientist Wolfgang
von Kempelen built a speaking machine that could gener-
ate simple words and short sentences. In the second half of
the 20th century, the first computer-based speech synthesis
systems were introduced.Early computer-based speech syn-
thesis methods include articulatory synthesis[17], formant
synthesis and concatenative synthesis. Later, with the de-
velopment of statistical machine learning, Statistical Para-
metric Speech Synthesis (SPSS) [19]was proposed, and



speech synthesis was further developed. Statistical paramet-
ric speech synthesis methods are able to predict speech syn-
thesis parameters such as spectrum, fundamental frequency
and duration. Since the 2010s, neural network-based speech
synthesis[10][21] has achieved better speech quality and has
gradually become the mainstream method. Some works in-
troduce deep neural network into SPSS, such as those based
on deep neural network (DNN)[13] and those based on re-
current neural network (RNN)[25]. However, these mod-
els replace the HMM with a neural network and still pre-
dict acoustic features from linguistic features, following the
paradigm of SPSS. Later, Wang et al.[20] proposed to gen-
erate acoustic features directly from phoneme sequences in-
stead of linguistic features, which can be regarded as the first
exploration of end-to-end speech synthesis.

The neural network-based speech synthesis has high
speech quality in terms of intelligibility and naturalness, out-
performs traditional cascade and statistical parameter meth-
ods, and requires less human preprocessing and feature de-
velopment. However, training TTS models in an end-to-end
manner suffers from the different modalities between text
and speech waveforms, as well as the huge length mismatch
between character/phoneme sequences and waveform se-
quences. There are many challenges:

• Slow speech synthesis inference speed. Because mel-
spectrogram sequences are typically hundreds or thou-
sands in length, autoregressive models are slower to rea-
son when decoding to generate mel-spectrograms.

• Synthesized speech lacks robustness and controlla-
bility. Due to error propagation[1] and wrong attention
alignment between text and speech in autoregressive gen-
eration, the generated mel-spectrogram usually suffers
from word skipping and repetition problems[2]. Mean-
while, it is often difficult to directly control speech rate
and prosody in autoregressive generation.

• The training of short audio clips corresponding to
partial text sequences impairs text feature extraction.
Due to the limitation of waveform sample length and
GPU memory, we can only train short audio clips cor-
responding to partial text sequences, which makes it dif-
ficult for the model to capture the relationship between
phonemes in different partial text sequences.

Text to Speech TTS, which aims to synthesize natural and
understandable speech of a given text, has been a hot re-
search topic in the field of artificial intelligence for a long
time. The research of TTS has shifted from the early stage
of stage synthesis and statistical parameter synthesis to pa-
rameter synthesis based on neural networks and end-to-end
models, and the speech quality of end-to-end model synthe-
sis is close to the parity of human beings. The end-to-end
TTS model based on neural network usually first converts
text into acoustic features (such as mel-spectrograms), and
then converts mel-spectrograms into audio samples. How-
ever, most neural TTS systems generate mel-spectrograms
in an autoregressive manner, which is slow in reasoning and
lacks robustness and controllability of synthetic speech.

Text Analysis It is used for the extraction of text con-
version feature information for subsequent speech synthe-
sis. In statistical parametric synthesis, text analysis in-
cludes several functions such as text normalization[26],
word segmentation[22], part-of-speech (POS) tagging[16],
prosody prediction[3], and phoneme conversion[24]. Neu-
ral TTS greatly simplifies the text analysis module at
the stage of text analysis, modeling the input characters
and phonemes. Faced with any possible non-standard raw
samples, Neural TTS also requires text normalization to
obtain standard word formats from character input, and
also requires grapheme-to-phoneme conversion to obtain
phonemes from standard word formats, more suitable for
real-life use.

Acoustic model The role of the acoustic model is to di-
rectly generate acoustic features from language features,
phonemes or characters, which are further transformed
into waveforms using a vocoder. TTS acoustic models in-
clude early HMM-based and DNN-based models[25][4] in
Statistical Parametric Speech Synthesis (SPSS), followed
by sequence-to-sequence models[8]based on an encoder-
attention-decoder framework, and state-of-the-art feedfor-
ward networks[11][15] for parallel generation. The choice
of acoustic features largely determines the type of TTS
pipeline. Tried acoustic features such as mel cepstral co-
efficient (MCC), mel generalized coefficient (MGC), band
aperiodic (BAP), fundamental frequency (F0), voiced/un-
voiced (V/UV), bark-frequency cepstral coefficients and the
most widely used mel-spectrogram. The acoustic model is
divided into two stages: 1) the acoustic model in SPSS,
which usually predicts acoustic features based on linguis-
tic features, such as MGC, BAP, and F0; 2) the acoustic
model in neural-based end-to-end TTS, which is based on
phonemes or Character predicted acoustic features (such as
mel spectrograms).The attention mechanism is similar to the
observation mechanism of human beings on external things,
that is, people tend to focus on some important local infor-
mation in a lot of information, and choose information that
is more critical to the current thing to form an overall view
of thing’s impression. In recent years, attention mechanisms
have been widely used in fields such as nlp and CV. The
attention mechanism can be divided into soft attention and
strong attention, in which soft attention pays more attention
to channels or regions and is differentiable. In a neural net-
work model, the attention mechanism usually takes the form
of an additional neural network, which can help the model
rigidly select certain parts of the input, or assign different
weights to different parts of the input. The basic idea of the
attention mechanism is to use the feature map to learn the
weight distribution, and then apply the learned weight to the
original feature map for weighted summation. Now attention
machines are also used in TTS.

Vocoder The development of vocoders can be divided into
two stages: vocoders for statistical parametric speech syn-
thesis (SPSS), and vocoders based on neural networks. The
vocoder includes steps of vocoder analysis and vocoder
synthesis. In vocoder analysis, it analyzes speech and ob-
tains acoustic features such as Mel cepstral coefficients, fre-



quency band aperiodicity, and F0. In vocoding, it generates
speech waveforms based on these acoustic features. Neu-
ral vocoders fall into different categories: 1) autoregressive
vocoders, 2) Flow-based vocoders, 3) GAN-based vocoders,
4) VAE-based vocoders and 5) diffusion-based vocoders
. Early neural vocoders, such as WaveNet[9], Char2Wav,
WaveRNN[5], directly take language features as input and
generate waveforms. Later, Prenger et al.[12], Kim et al.[6],
Kumar et al.[7], Yamamoto et al[23]. took Mel spectrograms
as input and generated waveforms. Since speech waveforms
are long, autoregressive waveform generation requires a lot
of inference time. Therefore, generative models are used in
waveform generation.

Proposed Solution
In order to improve the slow inference speed, lack of ro-
bustness and controllability of the current TTS model, we
introduce the variance adaptor module.The variance adapter
consists of a duration predictor, a pitch predictor and an en-
ergy predictor.

(a) Model. (b) ConvFFT Block. (c) Variance adaptor.

Figure 1: The overall architecture for our model.(a).The
Convolution feed-forward Transformer.(b).The Variance
adaptor.(c)

Motivation The mel-spectrogram generated by Fast-
Speech has the problem of artifacts, because of the lack of
high-frequency information. The reason for this problem is
that the attention mechanism focuses on global information,
which makes The resulting image is over-smoothed, and the
language becomes stiff, undulating, and lacking in realism.
Therefore, we introduced a parallel residual block and con-
volution block. Through this method, the network will pay
attention to the parts that it values while paying attention to
the overall situation. For the problem of energy and pitch
loss, we use a linear layer at the end of the decoder to deal
with it, so that the network can predict the decoded energy
and pitch. This is only used in the training phase, and this
part is removed in the testing phase.

Model Overview The model is shown in Figure a.We no-
tice that FastSpeech2[14] only compute energy loss and
pitch loss in Variance Adaptor, while ignoring informations
of energy and pitch might partially loss during the process of
decoding. To solve the problem of inconsistancy of energy

and pitch, we propose additional energy and pitch losses in
decoder. As illustraed in figure 1(a) we add two extra lin-
ear layers in the end of decoder to predict decoded energy
and pitch. But these two additional outputs is only used in
training phase to improve the decoder’s ability to maintain
information.

ConvFFT Block A subtle artifact can be observed in mel-
spectrogram generated by FastSpeech, which is that gener-
ated sample is detail lacked in high frequency parts. This
problem is caused for only global informations is extracted
by multi-head attention block,Since this over-smoothing
problem can lead to unnaturalness in speech, we propose
a residual convolution block in parallel with multi-head at-
tention block to extract local information which aims to
achive a trade-off between global and local inforormation.
As shown in figure 1(b), same vector is input into multi-head
attention block and residual conv1d block to extract global
and local information respectively, then the two extracted in-
formation vectors are fused together. Feed-Forward Trans-
former stacks multiple FFT blocks for phoneme to mel-
spectrogram transformation, with N blocks on the phoneme
side, and N blocks on the mel-spectrogram side, with a
length regulator (which will be described in the next sub-
section) in between to bridge the length gap between the
phoneme and mel-spectrogram sequence. Each FFT block
consists of a self-attention and 1D convolutional network,
as shown in Figure 1b. The self-attention network consists
of a multi-head attention to extract the cross-position infor-
mation. Different from the 2-layer dense network in Trans-
former, we use a 2-layer 1D convolutional network with
ReLU activation. The motivation is that the adjacent hid-
den states are more closely related in the character/phoneme
and mel-spectrogram sequence in speech tasks. We evalu-
ate the effectiveness of the 1D convolutional network in the
experimental section. Following Transformer residual con-
nections, layer normalization, and dropout are added after
the self-attention network and 1D convolutional network re-
spectively.

Variance adaptor In training, we take ground-truth values
of duration, pitch, and energy extracted from the recording
as input to the hidden sequence to predict the target voice. At
the same time, we use ground true duration, pitch, and en-
ergy as targets to train duration, pitch, and energy predictors,
which are used for inference to synthesize target speech.
The variance adaptor aims to add variance information to
the phoneme hidden sequence, which can provide enough
information to predict variant speech for the one-to-many
mapping problem in TTS. We briefly introduce the variance
information as follows: 1) phoneme duration, which repre-
sents how long the speech voice sounds; 2) pitch, which
is a key feature to convey emotions and greatly affects the
speech prosody; 3) energy, which indicates framelevel mag-
nitude of mel-spectrograms and directly affects the volume
and prosody of speech. More variance information can be
added in the variance adaptor, such as emotion, style and
speaker, and we leave it for future work. Correspondingly,
the variance adaptor consists of 1) a duration predictor 2)
a pitch predictor, and 3) an energy predictor, as shown in



Figure c. In training, we take the ground-truth value of dura-
tion, pitch and energy extracted from the recordings as input
into the hidden sequence to predict the target speech. At the
same time, we use the ground-truth duration, pitch and en-
ergy as targets to train the duration, pitch and energy predic-
tors, which are used in inference to synthesize target speech.

• Duration Predictor The duration predictor takes the
phoneme hidden sequence as input and predicts the du-
ration of each phoneme, which represents how many mel
frames correspond to this phoneme, and is converted into
logarithmic domain for ease of prediction. The duration
predictor is optimized with mean square error (MSE)
loss, taking the extracted duration as training target. In-
stead of extracting the phoneme duration using a pre-
trained autoregressive TTS model in FastSpeech, we use
Montreal forced alignment (MFA) tool to extract the
phoneme duration, in order to improve the alignment ac-
curacy and thus reduce the information gap between the
model input and output.

• Pitch Predictor Previous TTS systems with tone pre-
diction based on neural networks usually directly pre-
dict tone profiles. In order to better predict the change
of pitch contour, we use continuous wavelet transform
to decompose the continuous tone sequence into a tone
spectrogram, and take the tone spectrogram as the train-
ing target of the tone predictor, which uses MSE loss to
optimize. In the inference, the pitch predictor predicts the
pitch spectrogram and further converts it into the echo
contour using the inverse continuous wavelet transform.

• Energy Predictor We calculate the L2 norm of the am-
plitude of each short-time Fourier transform frame as the
energy. Then, we quantize the energy of each frame into
256 possible values, encode them as energy embedded e,
and add them to the extended hidden sequence, similar to
tones. We use the energy predictor to predict the original
value of energy rather than the quantized value, and use
MSE loss to optimize the energy predictor.

Experiments
Datasets We evaluate the model on LJSpeech dataset.
LJSpeech contains 13,100 English audio clips (about 24
hours) and corresponding text transcripts. We split the
dataset into three sets: 12,228 samples for training, 349 sam-
ples (with document title LJ003) for validation and 523 sam-
ples (with document title LJ001 and LJ002) for testing. For
subjective evaluation, we randomly choose 100 samples in
test set. To alleviate the mispronunciation problem, we con-
vert the text sequence into the phoneme sequence with an
open-source grapheme-to-phoneme tool5.

Model Configuration Our model addresses the issue of
artifacts in the mel-spectrogram by introducing residual
blocks and convolutional blocks. The energy and pitch loss
issues are addressed by introducing a linear layer in the de-
coder.

Results To evaluate the perceptual quality, we perform
mean opinion score (MOS) evaluation on the test set. Twenty

Model Tradining Time(h) Inference Speedup
Transformer TTS 38.64 /
FastSpeech 53.12 48.5×
Ours 27.02 51.8×

Table 1: The comparison of training time and inference la-
tency in waveform synthesis. The training time of Fast-
Speech includes teacher and student training. The training
and inference latency tests are conducted on a server with a
NVIDIA 2080Ti GPU and batch size of 48 for training and
1 for inference.

Method MOS
GT 4.30±0.07
GT (Mel + PWG) 3.92±0.08
Tacotron 2 (Mel + PWG) 3.70±0.08
Transformer TTS (Mel + PWG) 3.72±0.07
FastSpeech (Mel + PWG) 3.68±0.09
Ours 3.71±0.09

Table 2: Audio quality comparison.

native English speakers are asked to make quality judg-
ments about the synthesized speech samples. The text con-
tent keeps consistent among different systems so that all
testers only examine the audio quality without other inter-
ference factors. We compare the MOS of the audio samples
generated by our model with other systems, including 1) GT,
the ground-truth recordings; 2) GT (Mel + PWG), where we
first convert the ground-truth audio into mel-spectrograms,
and then convert the mel-spectrograms back to audio us-
ing Parallel WaveGAN(PWG); 3) Tacotron 2 (Mel + PWG);
4) Transformer TTS (Mel + PWG); 5) FastSpeech (Mel +
PWG). All the systems in 3), 4) and 5) use Parallel Wave-
GAN as the vocoder for a fair comparison. The results are
shown in Table 2. can match the voice quality of autore-
gressive models Transformer TTS and Tacotron 2. Impor-
tantly, our model outperforms FastSpeech, which demon-
strates the effectiveness of providing variance information
such as pitch, energy and more accurate duration and di-
rectly taking ground-truth speech as training target without
using teacher-student distillation pipeline.

Conclusion
In this work, we address two issues in the model by adding
parallel residual blocks and convolutional layers, and adding
two linear layers in the decoder: 1) Artifacts exist in the
mel-spectrogram, which leads to The voice is too stiff, with-
out ups and downs. 2) Energy and pitch information loss
during decoding.By introducing these two modules, the au-
thenticity of the sound quality is improved, the fluctuation
of the sound quality is increased, and the loss of energy
and tone is alleviated.In addition, on this basis, we further
use a non autoregressive text to waveform generation model,
which has the advantage of complete end-to-end reasoning
and achieves faster reasoning speed. Our experimental re-
sults show that our model method has been improved, es-



pecially in speech quality, it can even surpass the autore-
gressive model. The training pipeline is much simpler, and it
inherits the advantages of the original TTS model of fast, ro-
bust and controllable speech synthesis. High quality, fast and
completely end-to-end training without any external library
is definitely the ultimate goal of neural TTS, and it is also a
very challenging problem. In order to ensure the high quality
of the model, we used external high-performance alignment
tools and tone extraction tools. This seems a bit complicated,
but it is very helpful for high-quality and fast speech syn-
thesis. We believe that there will be a simpler solution to
achieve this goal in the future, and we will certainly work
on a complete end-to-end TTS without external alignment
models and tools. We will also consider more variance in-
formation to further improve speech quality, and use lighter
models to speed up reasoning.
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