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Abstract

In the progression of the disease, genes usually work
interactively and change synergistically, which leads to
aberrations in clinical omics and difficulties in medi-
cal judgment. Therefore, there is no doubt that grasp-
ing the knowledge of co-expression gene situations
could help in disease state prediction. Despite tradi-
tional methods, rapid-developing deep learning tech-
nologies have also prompted this area in recent years. In
this work, we apply a late-fused graph attention layers-
based model to conduct disease diagnosis using co-
expression gene data. Our model first uses several graph
attention layers to extract high-level features and build
corresponding high-dimensional layers, then subtract
high-level features with original input, and finally ap-
plies a Squeeze-and-Excitation attention module-based
late-fusion paradigm to integrate them. In addition, we
conduct some experiments and demonstrate the redun-
dancy within different dimensions to mitigate the ef-
fects.

Introduction

Genomics omics refers to a comprehensive and global as-
sessment of entire genomes instead of genetics that only
stands for individual variants or single genes(Hasin Y. and
A. 2017). The purpose of genomics is to collectively char-
acterize and quantify all the genes of an organism, and to
study their interrelationships and their impact on the organ-
ism. With disease progression, genomics omics go through
a series of changes and aberrations, which makes it possi-
ble to serve as biomarkers that could help in observing and
indicating disease(Veli¢kovi¢ et al. 2017). Therefore, new
genomic tools for omics analysis will improve our ability to
identify diseases in the presymptomatic phase and guide the
therapeutic procedures(J 2004).

Research and analysis on genomics omics have been
widely carried out together with the development of com-
puter science technologies, from machine learning to deep
learning nowadays. Machine learning methods can be used
to ’learn” how to identify the location of transcription start
sites (TSS) in genomic sequences(M. and W. 2015). (To-
rio et al. 2016) used elastic net models to predict the drug
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IC50 of cancer cell lines given their profiles of gene mu-
tations and expression levels, depending on the compound,
a range of predictive accuracy is observed. With the same
dataset, (Cortés-Ciriano et al. 2015) showed that predictive
performance could in some cases be improved using a ran-
dom forest model linked to a measure of statistical confi-
dence in each prediction. (Kuzmin et al. 2020) used a vari-
ety of machine learning methods (support vector machine,
logistic regression, decision tree, random forest) to predict
the host specificity of coronaviruses, and their scheme has
a high accuracy rate by analyzing the host specificity of
multiple spike sequences. (Gupta et al. 2022) developed a
machine learning tool that used support vector machines to
build a model that predicts therapeutic proteins and classifies
therapeutic categories. Using this tool can accurately pre-
dict disease-causing proteins in genome and metagenomic
datasets, providing evidence in real validation, but the im-
proved tool does not perform well on real data.

With the gradual rise of more powerful technology with
deep learning, researches on disease diagnosis has been
prompted. (Aramburu A and et al 2015)used a semi-
supervised deep learning approach to analyze the prognosis
of lung cancer, (RJ et al. 2022) utilized multimodal tech-
nology for survival outcome prediction. When wider studies
have been carried out, these methods are said to ignore the
topological information among genes. Concurrently, more
recent researches find that co-functional gene modules could
show the disease status and biological processes better and
clearer(Muzio, O’Bray, and Borgwardt 2020). (M. et al.
2022) developed a priori attribution based on Fourier trans-
form, trained a more stable and interpretable deep neural
network model, and achieved consistent and reliable reve-
lation of biological patterns that drive various genomic reg-
ulatory events, while refining the decision-making process
of neural networks. Due to the specialty, the co-expression
data holds, one of the widely adopted methods is graph neu-
ral network(GNN). Xing et al. proposed to use a multi-level
attention graph neural network (MLA-GNN) to explore the
gene modules and topological information in omics data, but
it did not fully use the hierarchical information among lay-
ers, which might waste a lot of extracted features and infor-
mation.

Thus, in this work, we decide to integrate a Squeeze-and-
Extraction(SE) (Jie, Shen, and Sun 2018) attention module



with the feature extraction network of MLA-GNN, which
could not only gain the hidden relationship between genes,
but also take better usage of the hierarchical relationships
between gotten graph neural layers. What’s more, inspired
by the shortcut strategies of ResNet, we concern that the us-
age of GAT might lead to the redundancy of information
and carried out trial and error, finally proposing our model,
which gains better performance results based on evaluation
metrics. We call the proposed model ThinMLA since it eases
the redundancy of the information.

Related Work

High-throughput technologies have revolutionized medical
research continuously(Hasin Y. and A. 2017), and both tra-
ditional statistics and machine learning approaches as well
as a deep neural network are adopted. (Sidharth S Prakash
2020) built a usual deep neural network that can predict the
malignancy of breast cancer. (Yue Zhao and Andrew Pat-
tison 2020) developed an RNA-based classifier that uses a
1D inception convolutional neural network model to infer
the primary tissue of origin for tumors. (Iorio et al. 2016)
applied an elastic net model to predict the drug IC50 of
cancer cell lines given their profiles of gene mutations and
expression levels. (Capper D and et al 2018) used the ran-
dom forest algorithm to train the whole genome information
of 2810 cancer patients to realize the classification of cen-
tral nervous system tumors. (Aramburu A and et al 2015)
exploited a semi-supervised deep learning approach to ana-
lyze the prognosis of early-stage non-small cell lung cancer
based on gene copy number variation combined with clini-
cal information and gene expression, which is demonstrated
to be quite robust. (Kong and Yu 2018) constructed a graph
based on HINT dataset(H. 2012), and then conduct disease
outcomes prediction using a feedforward GNN. Neverthe-
less, these methods only consider gene seperately whereas
ignore the topological information among them.A stochastic
block model neural network was introduced by (Fanfani et
al. 2021) and then conduct disease outcomes prediction us-
ing a feedforward GNN. Nevertheless, these methods only
consider genes separately whereas ignoring the topological
information among them.

To include the topological relationships, instead of iden-
tifying markers as individual genes, (Chuang HY, Liu YT,
and T 2007) made breast cancer predictions through sub-
networks extracted from protein interaction databases, but
it lacks higher-level feature extraction. In contrast, (ie Hao,
Song, and Kang 2020) propose a convolutional neural net-
work combined with a gene pathway, based on patch texture
for cross-modal analysis, which can extract global survival
discriminant features without manual annotation of patho-
logically specific layers. (Strand and et al 2020) presented
a prognostic classifier that predicts both precancer recur-
rence and invasive progression. They compared and cor-
related breast cancer data with routine pathological find-
ings, clinical outcomes, and disease status to generate spa-
tial resolution maps of pre-breast cancer lesions based on a
multiscale approach. Similarly, to address the problem that
general graphs may not reflect gene interactions in specific
diseases, (Velickovi€ et al. 2017) proposed an interpretable

multi-level attention graph neural network (MLA-GNN) to
explore the gene modules and topological information in
omics data. Specifically, it uses graph attention layers(GAT)
to extract higher features and figure out the relationships be-
tween nodes. Thus, each node in the higher-level layer will
contain information about its neighbors together with the
topological information among them. Then, they simply use
linear projection to normalize the dimensions, and finally,
simply concatenate the features and transfer them into sev-
eral fully convolutional layers to do the prediction. However,
it did not fully take advantage of the relationship between
layers, which may lead to the extraction effect wastage.

Squeeze-and-Excitation Networks

(J. Hu and Sun 2018) focused on the channel relationship
and proposed a new architecture unit called ”squeeze and
excitation” (SE) block, that adaptively recalibrates channel-
wise feature responses by explicitly modeling interdepen-
dencies between channels. Experiments show that these
blocks can be stacked together to form SENet architec-
tures that generalize extremely effectively across different
datasets. In addition, SE blocks bring significant improve-
ments in performance for existing state-of-the-art CNNs at a
slight additional computational cost.

Deep Residual Learning for Image Recognition

(K. He and Sun 2016) proposed ResNet (Residual Net-
works) in 2015 to solve the problem that the training effect
of neural networks becomes worse when the number of lay-
ers is too deep. By directly bypassing the input information
to the output, the integrity of information is protected. The
entire network only needs to learn the difference between
the input and output, simplifying the learning objectives and
difficulties.

Proposed Method

The overview of the proposed model is illustrated in Figure
1. Unlike most of the previous works, we decide to construct
a graph based on each patient rather than considering all pa-
tients as a whole. Given K genes data for N patients, we
will first use a classic R package, WGCNA (Langfelder P.
2008), a weighted correlation network analysis for cluster-
ing highly correlated genes, is used to build the edge ma-
trix EX>K for each patient. Thus, a co-expression graph
Gy = G(VEX1 pKXKy g obtained, where VE*1 stands
for the features of K gene nodes and the edge matrix EFX* X
indicates the correlation relationships of genes. Next, we ap-
ply two graph attention layers (GAT) to construct hierarchi-
cal features G2 and G5 respectively. In order to ease the re-
dundancy, we subtract each head of the G2 and G5 layers
with G1, which makes the G5 and G35 retain the high-level
information better. In the proposed multi-level graph late-
fusion module, a SE attention toolkit is added to catch the
importance of different levels and channels and weighted
them. And then, graph features from different levels are con-
catenated after linear projection(LP) and vectorization. Fi-
nally, the fused feature is sent to the last stage of the pipeline
which is used to conduct downstream tasks, in this case, dis-
ease classification and survival prediction.
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Figure 1: Proposed model

Gene co-expression computation

To start with, we use GNNs to format the omic data of each
patient into a graph represented by feature V' and an edge
matrix E. Expect that each patient has K genes, the feature
can be implemented by V%<1, which indicates to a K nodes
graph with each node contains the expression of a gene. As
mentioned, we use the WGCNA analysis package to con-
duct the gene co-expression analysis and get the edge ma-
trix E. Specifically, the expression profile of each gene node
in training data X %> X is represented by an N-dimensional
vector, where NN is the number of patients in the training set.
The correlation calculation A;; between two nodes v; and
v; is

;) (vjn — Uj)
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where v; and ¥; means average features of the node v;
and v;. The WGCNA package’s ’pickSoftThreshold” func-
tion transforms the correlation matrix into an adjacency ma-
trix using a power function of the soft threshold /3. By this
means, we obtain an adjacency matrix A € R¥>*¥ which
shows that genes with similar expressions have higher adja-
cency values.
To create the edge matrix E, we binarize the continuous
values in the adjacency matrix A through
B — { L, Aij >adjinresh
K 0, otherwise

@)

where the hyperparameter adj;p s, is tuned using an au-
tomated machine learning technique [20]. Notice that, the
edge matrix E has universality and does not necessitate re-
peated calculations because it is computed using all training
data rather than patient-specific data.

Using the edge matrix E, each patient is considered as a

gene co-expression graph Gy = G(VEX1 BEXE) n this
graph, edges connect nodes with comparable gene expres-
sion while leaving other nodes unconnected. By processing
co-functional gene modules connected in the coexpression
graph, enhanced features of biological gene modules can
be recovered, and illness prediction performance can be im-
proved.
p For multi-level graph construction, the gene co-
expression graph G; = G(V K1 EKXK) of each patient is
loaded into a stack of GAT layers. The GAT layer is a more
advanced graph convolution layer that outputs each node’s
features as a weighted combination of adjacent nodes and
nodes themselves. Co-functional genes, as previously stated,
are more likely to be linked in the gene coexpression graph.
As a result, the output feature of each node following the
GAT layer is a weighted mixture of gene characteristics on
the co-functional gene module, which can more accurately
depict illness status (G and et al 2021).

Multi-level graph feature late-fusion

There are three different levels of graphs in total, includ-
ing the input graph G, and the high-level graphs gener-
ated through GAT layers G2 and G3. Although they have



the same number of nodes, they hold different hierarchical
information that the node in GGy stands for the expression
of an individual gene whereas nodes in Gy and G3 contain
knowledge from many co-functional genes and their neigh-
bors. For the sake of the significance, both gene features
and gene-group module features hold in omics representa-
tion learning(Ben-Hamo and et al 2020), we fuse the multi-
level graph features to produce more discriminative feature
representations.

However, since different layers have different dimensions
both in information and nodes, simply concatenating them
might lead the network to put more attention on the graphs at
a higher level, we further deal with the layers before fusion.
Firstly, since G2 and G5 both include the basic information
of G1, we consider that it is a huge unnecessary redundancy.
Thus, inspired by the shortcut concept of ResNet (He Kaim-
ing 2016), each block obtained from the heads of GAT is
subtracted by GG1. Secondly, to better balance the importance
of G1, G2, and GG3 to make the network more effective, a SE
module (Hu Jie and Sun 2018) is added to attach different
weights on different channels. Lastly, to concatenate layers,
we reduce the node dimension of G5 and G5 through linear
projection by fully connected layers to get G and G%. Then,
features G; , GY and G are vectorized and concatenated at
the end to produce the fused feature F' € R3*:

G
F= [Gy T3] 3)
Gs3-T3

where T, € RY*! and T3 € R'*! denote the weight
parameters in he linear projection layers. Thus, this late-
fusion module could utilize information from different di-
mensions with higher efficiency. The multi-level graph fea-
ture, which accurately mimics the biological regulatory pro-
cess and can thus better reveal the disease mechanism, is
of utmost importance to bioinformatics research and clini-
cal applications. Disease progression is a complex biological
process in which genes interact or cooperate.

Unlike other research that extracts representations by
pooling across all the nodes, it is also noticeable that this
method compresses the features inside each node while
keeping the node structure in the graph, we believe it re-
mains the biological meaning of each individual gene better
rather than destroy it by compressing across nodes.

Model prediction

The proposed method is intended to address a wide range of
therapeutic tasks. In the prediction module, the fusion fea-
ture F is stored by a continuous fully connected layer for
disease classification and survival prediction, as shown in
Figure 1c.

For the illness categorization task, the output y € R re-
flects the probability score for ¢ classes. The problem is op-
timized via cross-entropy loss. The output y € R! indicates
the “’risk ratio” in the survival prediction task. And the cox
loss is computed as:

Leow == > (=108, 0 () @

C(p)=1

where C(p) = 1 denotes the non-censored patient set, and
the cox loss calculation includes just the non-censored pa-
tients.

Experiment

To find the best way to ease the effect of redundancy be-
tween different layers and show the influence of the SE mod-
ule, we conduct several groups of contrast and ablation ex-
periments. To better compare with (Xing et al. 2022), we use
the RNAseq of glioma cases from TCGA-GBM and TCGA-
LGG projects as the basic datasets. The following section
will discuss the implementations in detail.

Dataset

The dataset contains the archives and 20531 expressed genes
for 769 patients. Because the training samples are very lim-
ited and the specialty of datasets in bioinformatics fields
holds, including too many features may lead to the ’curse
of dimensionality’ or ’large p, small n” problem, we need to
select features included carefully. We use semi-supervised
top 240 genes as the input following the instruction of (Xing
et al. 2022). The clinical information includes survival out-
comes and histological grading(Grade 11, Grade 111, and
Grade V), as the labels to be predicted by the models.

Implementation details

We implement the proposed model with Pytorch and Pytorch
Geometric library. The model is trained for 50 epochs with
Adam optimizer and with batch size set to 8. The learning
rate is initialized as 0.002 and linearly decayed in the train-
ing process. Adjinresh, defines the density of the gene co-
expression graph, which is set as 0.08. As for the dataset
set-up, to validate the effectiveness of our proposed model,
we conduct Monte Carlo 15-fold cross-validation in the ex-
periments and the split is strictly consistent with (Xing et al.
2022).

Contrast Experiments

In order to find out the best way to apply the shortcut strate-
gies, based on the model of (Xing et al. 2022), we set up
three control experiments and all are based on both the grad-
ing classification task and survival prediction task. Firstly,
after vectorization, we subtracted F from F5 and F3 and
named the model MLA-GNN-FI1. Similarly, let F3 minus F»
whereas F3 still deducting F1 we get MLA-GNN-Fp. And,
to maintain the node structure of graphs, the third model is
constructed by docking GGy directly from G5 and G5 before
linear projection, and we get MLA-GNN-G1. The experi-
ment results are shown in Table 1 and Table 2. We train
and test all the mentioned models together with the original
MLA-GNN model for comparison.

Experimental results in Table 1 and Table 2 show that
when the deduction of features from lower levels might de-
crease the performance slightly towards grading classifica-
tion tasks, it improves the ability when conducting survival
prediction jobs at a higher level, which might prove our sup-
pose that there exists the redundancy of information. Also,
results indicate that subtracting the original Gy graph rather



Model Accuracy Model Classification Accuracy | Survival c-index
MLA-GNN 0.6096 £ 0.1488 MLA-GNN 0.6096 £ 0.1488 0.6320 £ 0.1508
MLA-GNN-F; | 0.5976 + 0.1683 MLA-GNN-SE 0.6159 £+ 0.1344 0.6397 £+ 0.1554
MLA-GNN-F, | 0.6030 & 0.1527 Proposed 0.6242 + 0.1269 0.6551 £ 0.1812
MLA-GNN-G;, | 0.6174 £ 0.0781

Table 1: Model performance on the histological grading task
of glioma dataset, evaluated by average accuracy. The best
performance is highlighted by bold text.

Model c-index
MLA-GNN 0.6320 = 0.1508
MILA-GNN-F; 0.6388 +£0.1717
MLA-GNN-F,, | 0.6460 £ 0.1827
MLA-GNN-G; | 0.6515 4+ 0.1595

Table 2: Model performance on survival prediction task on
glioma dataset, measured by the average c-index metric. The
best performance is highlighted by bold text.

than the transformed vector helps more, we attribute this to
the necessity to hold the structures of the graph.

Ablation Experiments

After multi-level graph construction, the dimension of G
, Gy and G3 is (VEX1 | pExKy (yExh2 & pKxKy a5
(VExh3 = pEXK 'y respectively. Thus, we have (1+h2+h3)
channels in total, where 1 channel contains the original
nodes’ information, and ~2 and h3 channels include higher-
level knowledge. So as to verify whether a SE attention mod-
ule is useful or not, we add a SE module based on the MLA-
GNN model, named MLA-GNN-SE, and our final proposed
model to perform ablation experiments.

As shown in Table 3, SE module helps to increase the
performance of the model both on classification and survival
prediction tasks. Together with the shortcut strategies, our
proposed model outperforms more than the original MLA-
GNN.

Conclusion

In this study, we propose ThinMLA based on omics data to
replicate biological processes and explicitly investigate the
topological data present in the co-expression gene graphs.
By combining extracted features from co-expression genes,
the model can hierarchically extract functional gene module-
level features. However, through experiments, we display
the redundancy inside different layers of features obtained
from GAT layers and show the importance to construct con-
nections between layers with different dimensions using SE
attention module. Both on grading classification and survival
prediction tasks on glioma dataset, our model outperforms
better than the original MLA-GNN model.
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