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Abstract

Reinforcement learning algorithms have demonstrated signif-
icant potential in addressing complex decision-making tasks.
However, effective exploration of the action space remains a
challenge, particularly for the Proximal Policy Optimization
(PPO) algorithm, which can lead to suboptimal performance
and convergence issues. In this study, we introduce an adap-
tive regional trust criterion shearing mechanism to improve
the exploration-exploitation balance of the original PPO al-
gorithm. By dynamically adjusting the clipping range within
the trust region, our method aims to enhance the algorithm’s
ability to explore and exploit action spaces effectively. Exper-
imental evaluations, including comparative analyses with the
DQN and SAC algorithms, as well as the original PPO algo-
rithm, demonstrate the efficacy of our approach in learning
the Ms. Pacman game in the Atari environment. The results
indicate that our optimized PPO algorithm achieves improved
performance and sampling efficiency, highlighting its poten-
tial for addressing the exploration challenges inherent in tra-
ditional PPO algorithms.

Introduction
Deep learning models have demonstrated remarkable ad-
vancements, attaining state-of-the-art outcomes in fields
such as vision (Krizhevsky, Sutskever, and Hinton 2012;
Szegedy et al. 2015; He et al. 2016) and speech recogni-
tion (Amodei et al. 2016). This success can be attributed to
the proficiency of models like convolutional neural networks
in deriving high-level features from extensive datasets. Si-
multaneously, reinforcement learning has also made signif-
icant strides, particularly in addressing its historical chal-
lenges by enabling a more adaptable state representation.
Deep reinforcement learning (DRL) has found widespread
application in developing agents capable of mastering com-
plex control tasks within computer games. Notable achieve-
ments including an architectural proposition for solving 3D
first-person shooter game environments using deep learning
(Lample and Chaplot 2017) , an introduction of the ”Neu-
ral Fictional Self-Game” approach for learning approximate
Nash equilibrium strategies (Heinrich and Silver 2016), and
a groundbreaking work in generalizing the AlphaGo Zero
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program to achieve superhuman performance spanning var-
ious domains (Silver et al. 2017).

The Atari 2600 platform, popularly known as Atari
games, was home to several hundred video games developed
during the 1980s. As a pioneer and substantial influence in
the early years of the video game industry, it introduced a
wide array of game genres, ranging from arcade-style action,
adventure, racing, to puzzle games. These games present di-
verse and increasingly intricate environments, thereby of-
fering a plethora of challenges that steer the formative de-
velopment of Artificial Intelligence (AI), specifically in the
field of reinforcement learning. And today, Atari games have
emerged as a standard benchmark for the evaluation of rein-
forcement learning algorithms.

In recent times, remarkable strides in AI and Machine
Learning (ML) have yielded astounding outcomes, surpass-
ing human performance in diverse domains, such as ATARI
games. Notably, Ziyu et al. introduced an innovative re-
inforcement learning approach, leading to substantial en-
hancements in policy evaluation and performance within
the renowned Atari 2600 game, MsPacman (Mnih et al.
2015). Additionally, Ding et al. introduced the Deep Spik-
ing Q-Network (DSQN), a more resilient and efficient rein-
forcement learning approach that demonstrates exceptional
proficiency in ATARI games (Van Hasselt, Guez, and Sil-
ver 2016). These achievements have sparked widespread in-
terest in AI and neural networks, particularly in the realm
of Deep Reinforcement Learning (RL). However, Poor ini-
tialization can cause Proximal Policy Optimization (PPO)
to suffer from a lack of exploration, increasing the risk of
training failure or entrapment in suboptimal local optima.
This limitation can hinder the algorithm’s performance, par-
ticularly in complex and high-dimensional environments
where finding optimal policies becomes increasingly chal-
lenging. Therefore, there is a critical need to develop inno-
vative methods that can dynamically adjust the exploration-
exploitation trade-off within the trust region to improve the
algorithm’s ability to navigate and learn from complex ac-
tion spaces.

In this work, we explore a novel approach, in which we
enhances the original PPO algorithm by employing an adap-
tive region trust criteria clipping mechanism, which adap-



tively adjusts the clipping range based on the trust region.
We also conducted a series of comparative experiments, in-
volving the application of the DQN algorithm, the PPO algo-
rithm, the SAC algorithm, and our optimized PPO algorithm
to learn the Ms. Pacman game in the Atari environment. Our
contributions are as follows

• we proposed a novel enhancement proposed for the PPO
algorithm. The experimental findings demonstrate that
this unique improvement strategy exhibits slightly su-
perior performance compared to the conventional PPO
method.

• We conduct a comprehensive comparison of three rein-
forcement learning algorithms, namely DQN, PPO, and
SAC, in application to the Atari game, MsPacman. The
experimental results illustrate that amongst these, PPO
not only demonstrated superior performance, but also
achieved the result in the shortest time.

Related Work
Game-playing algorithms have a rich history, with some
even surpassing human players. In this section, we will delve
into related works that explore self-playing algorithms. We
categorize these works into three main areas: non-deep
learning methods, deep reinforcement learning methods, and
multi-agent deep reinforcement learning methods.

Non-deep learning
Early research in this area mainly used some non-deep learn-
ing methods. Wender et al. (2012) evaluated the suitability
of reinforcement learning (RL) algorithms for performing
combat unit micromanagement tasks in the commercial real-
time strategy (RTS) game StarCraft: Broder War. After that,
Crespo Wichert (2020) presented a comprehensive review
on reinforcement learning applied to games, discussing both
classic and recent developments. They highlighted the im-
portance of self-play, where the algorithm learns by play-
ing against itself without requiring any direct supervision.
In another study, Bai Jin (2020) introduced a self-play algo-
rithm,Value Iteration with Upper/Lower Confidence Bound
(VI-ULCB),and showed that it achieves regret after play-
ing T steps of the game. This work presents the first line of
provably sample-efficient self-play algorithms for competi-
tive reinforcement learning. These studies demonstrate the
effectiveness of non-deep learning methods in game appli-
cations, providing a strong foundation for further research
in this area.

Deep Reinforcement Learning
Given the intricate nature and inherent challenges of mul-
tiplayer games, multi-agent reinforcement learning has sur-
faced as a potential solution. A landmark development in
this field was the advent of the Deep Q-Network (DQN)
algorithm, pioneered by Mnih et al. (2013). This marked
the inaugural successful fusion of deep learning and rein-
forcement learning, specifically Q-learning, culminating in a
comprehensive learning system. Building upon the founda-
tional work of then, Ivan Sorokin et al.(2015) have applied
the DQN algorithm to a variety of gaming contexts with

notable success. For instance, in the realm of Atari games,
DQN has been utilized to approximate state-value functions,
yielding impressive results such as achieving human-like ac-
curacy after approximately 110 games and superior perfor-
mance after 300 games. This application of DQN demon-
strates its potential in tackling complex, high-dimensional
problems within the gaming sphere. Another significant con-
tribution to this field is the Proximal Policy Optimization
(PPO) algorithm, proposed by Schulman et al. (2017). This
algorithm represents a novel category of policy gradient
methods that alternate between data sampling through en-
vironmental interaction and the optimization of a “surro-
gate” objective function via stochastic gradient ascent. In
the realm of game-playing applications, PPO algorithm has
been successfully implemented by Chao Yu et al.(2018).
They demonstrated that PPO-based multi-agent algorithms
achieve surprisingly strong performance in four popular
multi-agent testbeds: the particle-world environments, the
StarCraft multi-agent challenge, Google Research Football,
and the Hanabi challenge, with minimal hyperparameter
tuning and without any domain-specific algorithmic modi-
fications or architectures. Importantly, compared to compet-
itive off-policy methods, PPO often achieves competitive or
superior results in both final returns and sample efficiency.
This application of PPO demonstrates its potential in tack-
ling complex, high-dimensional problems within the gaming
sphere. The Soft Actor-Critic (SAC) algorithm proposed by
Haarnoja et al. (2019), introduces an innovative approach by
striving to maximize not only the expected return but also
the policy’s entropy. This implies that the algorithm aims to
accomplish the task while maintaining as much randomness
in its actions as possible.

Multi-agent Deep Reinforcement Learning
Given the complexities and challenges of multiplayer
games, multi-agent reinforcement learning has emerged as a
promising approach. Lowe, Ryan, et al. (2017) proposed an
adaptation of the actor-critic method that takes into account
the action strategies of other agents and it is able to success-
fully learn strategies that require complex multi-agent coor-
dination. By defeating the Dota 2 world champions (Team
OG) , OpenAI Five proved that self-playing reinforcement
learning can achieve superhuman performance on difficult
tasks (BERNERC et al. 2019) . Then Brown et al. (2019) in-
troduced an artificial intelligence system named ’Pluribus’,
which is capable of outperforming top human players in
six-player no-limit Texas Hold’em poker. In the same year,
Vinyals et al. (2019) developed AlphaStar, a multi-agent re-
inforcement learning algorithm that leverages data from hu-
man and agent games, achieving a Grandmaster level of play
for all three StarCraft races and surpassing over 99.8% of of-
ficially ranked human players.

Our Work
Model
First, the state of each step of the game is an 84*84 RGB
image. After a series of preprocessing, an 84*84 grayscale



Figure 1: After each frame of image is pre-processed and input into the decision-making network, the probability distribution
of the next action in a certain state is obtained.

image is obtained and input into the network. The advan-
tage function of the state and the action is calculated through
critic and calculated through actor. The probabilities of each
action of the agent are obtained, and random sampling is per-
formed based on these probabilities to obtain the next action.
The actor parameters are updated based on the ratio of the
probabilities of the new and old strategies and the calculated
advantage function, and the probability ratio is adaptively
tailored according to our algorithm. Then the parameters are
updated according to gradient ascent.

Previous Algorithm
PG The policy gradient algorithm is an on-policy algo-
rithm. The limited trajectory obtained by interacting with
the environment through the policy function uses gradient
ascent to update the policy function. The most commonly
used gradient estimator has the following form:

ĝ = Êt

[
∇θ log πθ (at | st) Ât

]
(1)

Among them, Ât represents the advantage function, and the
specific form is as follows. It is expected that Et represents
the average value of limited batch sample experience.

Aθ (st, at) =
∑
t′>t

γt′−trt′ − Vϕ (st) (2)

Among them, Vϕ(st) is calculated by critic. It consists of
a neural network with the same structure as the policy net-
work but different parameters. It is mainly used to fit the
discount reward from st to the end game. The first half of
Aθ is the actual sampling discount reward, and the second
half is the fitted discount reward. Aθ represents the advan-
tage of the actual discount reward obtained by taking action
at under st compared to the simulated discount reward. This
advantage function is given by a critic (evaluator). The final
corresponding objective function is:

LPG(θ) = Êt

[
log πθ (at | st) Ât

]
(3)

A big disadvantage of the PG method is that the parameter
update is slow, because every time we update the parameters,
we need to resample, and our sample can only be used once.
This is actually an on-policy strategy, that is, the agent we
want to train. It is the same agent as the agent that interacts
with the environment; corresponding to it is the off-policy
strategy, that is, after we use the sample to update it once,
we no longer discard it, but reuse the old data to update it
multiple times.

PPO-Penalty The biggest improvement of TRPO over PG
is the implementation of off-policy, but it is obviously unrea-
sonable to just repeat learning on old data, which will lead
to destructive updates of policy parameters. For this purpose,



Figure 2: The green line represents the first item in min, that
is, no processing is performed, and the blue line represents
the second item, which is the clipping item. If the gap be-
tween the two distributions is too large, a certain degree of
clipping will be performed. The final red line is to take min
from these two items.

the objective function of importance sampling is introduced
as follows:

maximize
θ

Êt

[
πθ (at | st)
πθold (at | st)

Ât

]
(4)

subject to Êt [KL [πθold (· | st) , πθ (· | st)]] ≤ δ. (5)
θ(old) refers to the parameters before updating the strategy.
θ(old) and θ cannot be too far apart, because too far a dif-
ference will introduce fallacies, so we need to use KL di-
vergence to constrain the difference between the two. Distri-
bution bias. The theory that proves TRPO actually suggests
using penalties rather than constraints to solve unconstrained
optimization problems, which is what follows

max
θ

Êt

[
πθ (at | st)
πθold (at | st)

Ât − βKL [πθold (· | st) , πθ (· | st)]
]

(6)
TRPO uses hard constraints instead of penalties because it is
difficult to choose a value β that performs well in different
problems, or even within a problem when the learned fea-
tures vary. Experiments show that simply selecting a fixed
penalty coefficient β and using SGD to optimize the penalty
objective equation is not enough; β needs to be continuously
adjusted during the update process.

PPO-clip The definition is as follows:

rt(θ) =
πθ (at | st)
πθold (at | st)

(7)

LCLIP (θ) = Êt

[
min(rt(θ)Ât, clip(rt(θ), 1−ϵ, 1+ϵ)Ât)

]
(8)

We now consider modifying the target to penalize changes
that move the ratio away from 1. The first term within the
minimum is the original value. The second term limits rt to
(1-ϵ) and (1+ϵ) through clipping, thus eliminating the possi-
bility of rt running out of this interval. Finally, the minimum
value of the clipped target and the uncut target is taken.

Adaptive shearing mechanism
We give an in-depth analysis of the exploration behavior of
PPO and show that PPO is susceptible to the risk of lack
of exploration especially in the case of poor initialization,
which can lead to failure of training or getting stuck in poor

local optima. To address these issues, we propose a new pol-
icy optimization method that adaptively adjusts the clipping
range within the trust region. If current policy does not fa-
vor that action, then PPO’s ratio-based measure will tend
to continually weaken the likelihood that that action will be
chosen in the future. Therefore, PPO is prone to the risk of
lack of exploration, especially in the case of poor initial-
ization, which may lead to training failure or falling into
a bad local optimum. To address these issues, we propose
an enhanced PPO method, whose improved exploration ca-
pabilities and better performance constraints are theoreti-
cally justified compared to the original PPO. This approach
builds a connection between ratio-based metrics and trust-
region-based metrics such that the resulting ratio clipping
mechanism allows relaxing the constraints imposed on less
preferred operations. This effectively encourages policy to
explore more potentially valuable actions, whether or not
they were favored by previous policies. At the same time,
the range of the new ratio-based constraints remains within
the trust region; therefore, it does not harm the stability of
learning. Extensive results on several benchmark tasks show
that this method significantly improves policy performance
and sampling efficiency. We define a new clipping range
(lδs,a,uδ

s,a), a is a hyperparameter

lδs,a = min
π

{
π(a|s)

πold(a|s)
: Ds

KL(πold, π) ≤ δ

}
uδ
s,a = max

π

{
π(a|s)

πold(a|s)
: Ds

KL(πold, π) ≤ δ

} (9)

A PPO metric with a constant shear range can cause ex-
ploration problems because it imposes relatively tight con-
straints on actions that older strategies dislike. Therefore,
we hope to be able to relax this constraint by increasing
the upper clipping range and decreasing the lower clipping
range when the probability of the old policy decreases. Fig-
ure 2 shows the shear range of PPO2 and PPO. For PPO2
(blue curve), as πold gets smaller, the upper shear range in-
creases, while the lower shear range decreases, which means
that as πold gets smaller, The restrictions are relatively loose.
This mechanism can encourage agents to explore more po-
tentially valuable actions that were not favored by the old
policy.
We now propose how to efficiently compute adaptive clip-
ping ranges. For the discrete action space, using the KKT
condition, it is transformed into solving the following equa-
tion

g(πold(a|s), X)(1− πold(a|s)) log
1− πold(a|s)
1− πold(a|s)X

−πold(a|s) logX = δ

(10)

By solving the above equation, we can get (lδs,a,uδ
s,a)

Experiments
In this section, we present the experimental evaluation of
several reinforcement learning algorithms, including Soft
Actor-Critic (SAC), Proximal Policy Optimization (PPO),
Deep Q-Network (DQN), and our proposed algorithm. The



Figure 3: Comparison of shear ranges of ppo and ppo2 as
πold changes

experiments were conducted in the Atari game environment,
aiming to assess the performance and effectiveness of these
algorithms in challenging and dynamic environments.

Experiments Settings
Hardware Configuration Our experimental hardware en-
vironment consists of a Linux workstation equipped with an
RTX 4060 graphics card boasting 16GB of dedicated mem-
ory. This configuration provides us with the necessary com-
putational power and resources for training and evaluating
reinforcement learning algorithms.

Experimental Platform For our research, we have cho-
sen Tianshou as the experimental platform. Tianshou is a
reinforcement learning platform that is built upon pure Py-
Torch. It offers a modularized framework and a Pythonic
API, enabling the development of deep reinforcement learn-
ing agents with minimal lines of code. Tianshou has been
widely recognized as a highly suitable platform for algo-
rithm comparison and evaluation in the field of reinforce-
ment learning.

Experimental parameter setting To ensure a fair com-
parison, we have carefully selected and fine-tuned the pa-
rameters of each algorithm based on existing literature and
empirical observations. After training each algorithm for ten
million steps in our custom game environment, we con-
ducted a comprehensive evaluation to compare their perfor-
mance. The key parameters for each algorithm are as fol-
lows:

For all the algorithms, we maintained a buffer size of
100,000, a discount factor (gamma) of 0.99, and conducted
100 epochs with each epoch consisting of 100,000 steps.
Additionally, we tailored specific parameters for each algo-
rithm.

• For the Proximal Policy Optimization (PPO) algorithm
and our proposed algorithm, we set the learning rate to
2.5e-4 and the batch size to 256.

• Regarding the Soft Actor-Critic (SAC) algorithm, we as-
signed a learning rate of 1e-5 for both the actor and critic

networks, and utilized a batch size of 64.
• For the Deep Q-Network (DQN) algorithm, we em-

ployed a learning rate of 1e-4 and a batch size of 32.

Experiments results
Our experimental evaluation reveals significant insights into
the performance of the studied reinforcement learning al-
gorithms. The experiments were conducted over 10,000,000
training steps, and the algorithms were evaluated based on
their training and test rewards, as well as loss trajectories.

Training and Test Rewards The train reward curve
shown as Fig.4 indicates that SAC and our proposed al-
gorithm consistently outperformed DQN and PPO in terms
of cumulative rewards throughout the training process. No-
tably, SAC demonstrated a rapid ascent in rewards, suggest-
ing a swift policy improvement over initial steps. Our algo-
rithm exhibited competitive performance, closely following
SAC and surpassing PPO and DQN. In the test environment,
as can be seen in Fig.5 the algorithms’ rankings remained
consistent with the training phase, with SAC achieving the
highest rewards, followed by our algorithm, PPO, and DQN,
respectively.

Figure 4: Training Reward Progression: Reward progres-
sion during training, showing SAC and our algorithm out-
performing PPO and DQN.

Loss Trajectory The loss curve shown as Fig.6 presents
an interesting perspective, with our algorithm manifesting
a more stable decline in loss compared to PPO. Initially,
both algorithms experienced fluctuations; however, as train-
ing progressed, our method showed a steadier and more pro-
nounced decrease in loss values, indicating a more stable
learning process.

Computational Efficiency In terms of computational effi-
ciency, our proposed PPO variant demonstrated a significant
reduction in training time, completing the 10,000,000 steps
in just 2.579 hours, while the standard PPO completed it in
2.355 hours. SAC and DQN exhibited comparable training



Figure 5: Test Reward Performance: Test phase rewards,
with SAC leading, followed by our algorithm, PPO, and
DQN.

Figure 6: Loss Trajectories:Loss trajectories for PPO and our
algorithm, indicating more stable learning for our method.

durations of 6.715 and 6.761 hours, respectively, highlight-
ing the efficiency of our approach.

Summary In summary, SAC led the performance charts
in terms of reward acquisition, with our proposed algorithm
not far behind, showcasing robust learning capabilities. Our
algorithm’s efficiency in training time offers a consider-
able advantage, particularly in resource-constrained scenar-
ios. The lower loss values and faster convergence rate of
our algorithm suggest an improved exploration strategy and
policy optimization over standard PPO. These results under-
score the potential of our enhanced PPO method in challeng-
ing and dynamic environments.

Conclusion
This paper uses the adaptive regional trust criterion shear-
ing mechanism to improve the original PPO. This method
can adaptively adjust the clipping range within the trust area.
We formally show that this approach not only improves the
exploration capability within the trust region but also has
better performance constraints than the original PPO. Our
PPO2 method improves the performance of the original PPO
through more exploration and better sample efficiency, and
is competitive with several state-of-the-art methods, while
maintaining the stable learning performance and simplicity
of PPO. We start our work from the impact of the measure-
ment of policy constraints on the exploratory behavior of
policy learning. In this sense, our adaptive pruning mecha-
nism is a new alternative that can incorporate prior knowl-
edge to achieve fast and stable policy learning. We hope it
will inspire future work to examine more explicit policy in-
dicators to guide effective learning behaviours.
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