
Contextual Distortion Information Compensation
for GAN inversion image editing

Ziqiang Zhang1, Yeyu Zhu1, Shang Wang2, Xiuhuai Xie1, Hailong Li1
1Class of School of Informatics

2Class of Artificial Intelligence Research Institute
23020231154258, 23020231154266, 31520231154270, 23020231154238, 23020231154145

Abstract
Cross-modal generation, involving the transformation of in-
formation across different modalities while preserving se-
mantic consistency, has been a focus of research. Text-to-
image generation, in particular, presents a significant chal-
lenge due to the abstract nature of text descriptions. This
study addresses the task of text-driven image attribute editing
within the context of Generative Adversarial Networks Inver-
sion. The primary aim is to develop a method that faithfully
reconstructs images while allowing for flexible and precise
attribute editing driven by textual descriptions.We proposes
an innovative approach that aims to overcome the Distortion-
Edit trade-off dilemma. The key idea is to leverage contex-
tual information completion during image reconstruction. the
study introduces two key components: the Contextual Distor-
tion Information Prediction Network and a Context Informa-
tion Fusion module. The former predicts rich contextual and
geometric information between two images, while the latter
uses a gating mechanism to integrate distortion information
into the image generation process. Ensuring both editability
and significantly improved image fidelity. The research also
leverages the latest Contrastive Language-Image Pre-training
(CLIP) model, specifically the StyleCLIP variant, to modify
input latent vectors and achieve attribute editing aligned with
user-provided text descriptions.

Introduction
Visual mental imagery plays a crucial role in human cog-
nitive processes, impacting memory, spatial navigation, and
reasoning. The rise of deep learning, particularly the emer-
gence of Generative Adversarial Networks (GANs), has rev-
olutionized computer vision and image processing (Good-
fellow et al. 2014). One of the applications of GANs is im-
age synthesis, a technique that allows the generation of new
images or modifications to existing ones, providing exten-
sive creative opportunities in fields such as art, design, and
game development. GANs have been successfully employed
in high-resolution face synthesis, image super-resolution,
restoration of images with an oil-painting effect, style trans-
fer, image-to-image translation, and representation learning,
among others.

However, existing GAN inversion methods either per-
form per-image optimization for higher reconstruction qual-
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ity (Abdal, Qin, and Wonka 2019; Kang, Kim, and Cho
2021), which may lead to deviations from the GAN man-
ifold and reduced editing quality, or utilize encoder-based
approaches for faster inference and superior editing perfor-
mance (Alaluf et al. 2022; Richardson et al. 2021) but often
sacrifice reconstruction accuracy and fidelity. These meth-
ods can capture a coarse layout (low-frequency patterns) but
tend to overlook image-specific details (high-frequency pat-
terns), resulting in distortions. For example, reconstructed
face images may exhibit prevalent patterns found in the
training data, like typical poses or expressions, while details
appearing infrequently in the training data, such as back-
ground, lighting, or accessories, are distorted. Preserving
image-specific details with high fidelity is crucial for recon-
struction and editing.

Although efforts have been made to enhance the recon-
struction accuracy of encoder-based methods, their editing
performance often degrades (Alaluf et al. 2022). From one
perspective, the GAN inversion problem can be viewed as
a lossy data compression system with a fixed-parameter de-
coder, which involves a trade-off between universal infor-
mation and the retention of image-specific details. Conse-
quently, balancing this trade-off is essential.

With this background in mind, this paper introduces a
novel Contextual Distortion Information Complementary
GAN Inversion for Image Editing (CDIC) approach. CDIC
enhances image fidelity and perceptual quality while re-
taining editable attributes for image editing. Specifically,
CDIC leverages contextual distortion information between
the original image and the initial reconstruction to supple-
ment detailed knowledge. A Contextual Distortion Infor-
mation Prediction (CDIP) network is designed, utilizing a
weighted stacked hourglass structure with spatial attention
mechanisms to encode contextual information from the im-
age. The CDIP network accurately predicts distortion infor-
mation between the original and reconstructed images.

Related Work
GAN Inversion. The existing GAN inversion methods can
be classified into optimization-based methods, encoder-
based methods and hybrid methods. Optimization methods
can achieve higher reconstruction quality, but the inference
speed is slow. (Abdal, Qin, and Wonka 2019) used ADAM to
solve the optimization problem. Minyoung et al used covari-



ance matrix adaptation for gradient-free optimization. In-
stead of per-image optimization, Junyan Zhu et al. learned
an encoder to transform the image. pSp (Richardson et al.
2021) and GHFeat (Xu et al. 2021) proposed to embed la-
tent codes in a hierarchical manner. Furthermore, e4e (Tov
et al. 2021) analyzes the trade-off between reconstruction
and editing capabilities. (Wei et al. 2021) improved the in-
version efficiency by a shallow network with efficient heads.
(Alaluf, Patashnik, and Cohen-Or 2021) projected latent
code with iterative refinement. These methods are more ef-
ficient, but do not allow for high-fidelity reconstruction. Hy-
brid methods make a compromise. Junyan Zhu et al. initial-
ize the optimization with the encoder output for speedup.
Guan et al. designed a collaborative learning scheme for the
encoder and optimization iterator. Daniel et al. fine-tuned
the StyleGAN parameters for each image after predicting
the initial latent code, which takes several minutes for a sin-
gle image. Compared to previous methods, the approach in
this paper greatly improves the reconstruction quality of the
encoder model and does not increase inference time.

GAN inversion methods can also be categorized accord-
ing to the latent space used. Z-space (Karras, Laine, and
Aila 2019) is simple but has feature entanglement. The W
(Karras, Laine, and Aila 2019) and W+ (Abdal, Qin, and
Wonka 2019) spaces in Style GAN are more de-entangled,
where the W+ space extends the W space by using a differ-
ent additional latent code.The S space (Wu, Lischinski, and
Shechtman 2021) is proposed by transforming the W+ by
affine layers.The P space (Zhu et al. 2020) inverts the image
to the last activation layer in the nonlinear mapping network.
In addition to StyleGAN, some works (Gu, Shen, and Zhou
2020) also used multiscale latent codes for ProgressGAN
(Karras et al. 2017). However, these latent spaces inevitably
lose details when reconstructing the image due to bit rate
constraints. For high-fidelity inversion, this paper proposes
contextual information complementation to convey informa-
tion specific to the high-frequency domain of an image.
Latent Space Editing. A number of supervised and unsu-
pervised methods explore vector operations for semantic ori-
entations in the GAN latent space. Supervised methods re-
quire off-the-shelf attribute classifiers or images annotated
with specific attributes. InterfaceGAN (Shen et al. 2020)
trains SVMs to learn the boundary hyperplane for each bi-
nary attribute. StyleFlow (Abdal et al. 2021) learns invert-
ible mappings via normalized flows and off-the-shelf classi-
fiers. Other work (Jahanian, Chai, and Isola 2019; Plumer-
ault, Borgne, and Hudelot 2020) explores simple geometric
transformations through self-supervised learning. The unsu-
pervised approach does not require a pre-trained classifiers.
GANspace (Härkönen et al. 2020) performs PCA on early
feature layers. similarly, SeFa (Shen et al. 2020) performs
feature vector decomposition on affine layers. Some works
(Lu et al. 2020; Voynov and Babenko 2020) find distinguish-
able attribute directions based on mutual information. La-
tentCLR (Yüksel et al. 2021) explored attribute directions
through contrast learning.

Recent work has demonstrated the existence of a
distortion-editability trade-off: inverting images into well-
behaved regions of StyleGAN’s latent space yields better

editability. However, these regions are typically less expres-
sive, resulting in a reconstructed image that is less faithful
to the original. Img2Style proposes that extending the input
latent code from the W space to the W+ space can achieve
higher fidelity, but accordingly, the editability of the image
is greatly reduced.

Method
Overview
We propose utilizing contextual information to enhance the
network’s understanding of the relationship between local
and global image features, aiming to reduce artifacts. Our
approach introduces a new encoding process consisting (as
shown in Figure 1) of two main components: Contextual
Distortion Information Prediction (CDIP) and Contextual
Distortion Information Fusion (CDIF). In contrast to con-
ventional encoder-based methods that employ a single input,
we utilize both the original image I and the initial generated
image Ro from the pre-trained e4e model as inputs.

During the inversion process, CDIP leverages the geomet-
ric information from two images and incorporates contex-
tual information from the original image to derive distor-
tion information D. This distortion information represents
the fine-grained details lost during the e4e encoding process
while considering the contextual relationships. The obtained
distortion information is subsequently fed into CDIF to gen-
erate the latent code w, and be fused with the feature of the
generator.

The same process applies to attribute editing, except the
initial edited image Eo is used instead of Ro obtained
through pre-trained e4e .

Contextual distortion information prediction
The network can be conceptualized as two hourglass struc-
tures with multi-scale learning, enabling the acquisition of
information at different levels of granularity. The learn-
ing process involves extracting image features from fine to
coarse and then from coarse to fine. The larger-sized layers
contain a greater amount of information and can capture lo-
calized image attributes such as texture and details, whereas
the smaller-sized layers capture holistic information about
the entire image, including background and layout.

Context hourglass The network’s first component, called
the contextual hourglass, is used to encode the input im-
ages I and Ro and extract contextual information. It is rep-
resented by the blue section preceding the yellow cube in
Figure 1. Both images are fed into the contextual hourglass,
resulting in output image features of size (B, 24, H,W ) ,
where B represents the batch size, H denotes the image
height, and W represents the image width.To form the ge-
ometric feature G, the features of the two input images are
stitched together. G has dimensions (B, 1, 48, H , W ). Re-
garding contextual information, we utilize image I as the
base and extract three different scales of contextual informa-
tion (C1, C2, C3) during the encoding process. These con-
textual information scales are then fed into CDIF, which in-
corporates the contextual information into the fusion pro-
cess.
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Figure 1: The pipeline of our method. Firstly, the original image I and the initial inverse image Ro (obtained through pre-training
e4e) are input into CDIP. CDIP incorporates spatial attention mechanism to integrate contextual and geometric information,
generating the distortion information D. Subsequently, CDIF combines the initial latent code wo with D, obtained from e4e, to
form a new input w fed into the generator G. Additionally, D is fused in an early layer of the generator.
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Figure 2: Integrate contextual and geometric information.
We apply the spatial attention mechanism to process the con-
textual information. The processed contextual and geometric
information are then combined through summation and con-
volution operations.

It is important to note that we also need to compensate for
the lost information during attribute editing. After attribute
editing, the initial edited image Eo may deviate from the
original image I . This deviation can impact CDIP’s ability
to capture the lost detail information of the image accurately.
To enable the network to handle this deviation, we share the
weights of the first half of the contextual hourglass. This al-
lows the network to learn information from both images si-
multaneously, facilitating its understanding of the distortion
and correction process.

Geometry hourglass We employ a geometric hourglass to
decode the geometric information from the geometric fea-
ture G obtained through the Context hourglass. The decod-
ing process involves aggregating the image features and then

performing upsampling to obtain high-resolution geometric
features.To increase the perceptual field of the features and
reduce computational effort, we utilize three downsampling
modules. Each downsampling module consists of two 3D
convolution layers with size of 3x3x3. These downsampling
modules help to expand the sensory field to aggregate image
features. The resulting geometric features after downsam-
pling are denoted as G1 ∈ RB×8×48×H/8×W/8.To decode
the high-resolution geometric features, we employ alternat-
ing Att (attention) and upsampling modules. Each upsam-
pling module consists of a 3D transposed convolution with a
size of 4x4x4, followed by two 3D convolutions with a size
of 3x3x3 and. This upsampling process helps restore the fine
details in the geometric features.

In order to leverage contextual information to enhance the
accuracy of detailed information, we incorporate a spatial
attention mechanism (Woo et al. 2018) for feature fusion
rather than directly adding the geometric and contextual fea-
tures together, as shown in Figure 2. The spatial attention
weights enable the adaptive selection of ”important” regions
for the fusion of geometric and contextual features. The fu-
sion process involves first summing the extended Ĉi (con-
textual information) and Gi and then convolving them as,

Wi = σ(f5×5(Gi + Ĉi)), (1)
where σ denotes the sigmoid function, and f5×5 is a convo-
lution operation with a convolution kernel size of 5x5. The
attention weights obtained contain information about the lo-
cations that need to be emphasized or suppressed. Finally,
we fuse the contextual and geometric features as,

Gi+1 = f5×5(Gi +Wi ⊙ Ĉi). (2)



where i denotes the output of the i-th fusion and ⊙ denotes
the Hadamard product.

Contextual distortion information Fusion
The size of w, which is only (18, 256), has a low bit rate,
limiting the amount of information it can carry. Therefore,
compensating for information solely within w is not suffi-
cient. To address this limitation, we also introduce compen-
sation at the early layers of the generator. The generator con-
sists of 18 layers, and to prevent overfitting, we specifically
choose to compensate for distortion information at the 7th
layer. This layer has a size of (512, 64, 64) and can accom-
modate more information. To fuse the distortion information
D with the initial latent code w and the generator, we em-
ploy an affine transformation process. As depicted in Figure
1, we utilize two convolutional networks to process the dis-
tortion information obtained from the CDIP output. These
networks are responsible for predicting the scaling parame-
ter γ and the displacement parameter θ, which are used for
compensating the information,

γw = fg
w(D), θw = f t

w(D),

γF = fg
F (D), θF = f t

F (D),
(3)

where mapping functions fg and f t are convolution lay-
ers.For the original feature map F from the generator, we
apply a channel scaling operation using the scaling param-
eter γ and then a channel displacement operation using the
displacement parameter θ. This process helps filter out un-
wanted features and complement detailed features, thereby
facilitating the generation of high-fidelity features in Style-
GAN,

AFF (wi|D) = γwi × wi + θwi,

AFF (Fi|D) = γFi × Fi + θFi,
(4)

where AFF represents the affine transformation. Fi repre-
sents the i-th channel of the feature map, while D refers to
the tensor containing complementary information. Addition-
ally, γi and θi represent the i-th scaling and shifting param-
eters.

However, the affine transform, being a linear transform
for each channel, limits the effectiveness of distortion in-
formation fusion. To address this limitation, we introduce
a CNN with activation functions after the affine transform,
introducing nonlinearity into the fusion process. This ex-
pands the representation space further and facilitates the
fusion of different distortion information and image fea-
tures.Additionally, the normalization operation converting
the feature map to a normal distribution contradicts the affine
transform’s objective, which aims to increase the distance
between different samples. As a result, the normalization
process is removed in CDIF, as it does not contribute to the
generation process.The final fused w and F can be repre-
sented as,

wfused = CNNw(AFF (w|D)),

Ffused = CNNF (AFF (F |D)).
(5)

where (AFF (w|D) and AFF (F |D) denote w and F , re-
spectively, after performing affine transformations on each

channel, and CNN denotes convolutional neural network.
For w, we design a convolutional layer and an activation
function; for F , we design two convolutional layers and an
upsampling layer.

Loss
During the training phase, the generator remains frozen, so
we focus on training the encoding process. We design the
loss functions to address both reconstruction quality and ed-
itability. For the reconstruction quality, we define the loss
functions for the original image I and the reconstructed im-
age Rf as,

Lrec = L2 + λLPIPSLLPIPS + λidLid, (6)

where L2 loss is utilized to evaluate structural similarity,
LPIPS (Zhang et al. 2018) loss is employed to assess per-
ceptual similarity, and Lid = 1− < F (I), F (Rf ) > is uti-
lized to measure identity consistency. Specifically, for the
face domain, F represents the pre-trained AceFace (Deng
et al. 2019) model, while for other domains, F refers to the
pre-trained ResNet-50 (Tov et al. 2021) model. To ensure
editability, we also incorporate the Ledit loss,

Ledit = L1(w,wfused) + L1(F, Ffused), (7)

this loss is utilized to regulate the distance between w, F and
the wfused, Ffused . Incorporating additional information
while keeping them close in the latent space helps maintain
editability, as suggested in (Tov et al. 2021).Ultimately, the
total loss is expressed as,

Ltotal = Lrec + λeditLedit. (8)

Experimentation
Experimental Settings
Datesets We applied CDIC in the face domain and
achieved excellent results. We used FFHQ (Karras, Laine,
and Aila 2019) for training and tested on CelebA-HQ (Kar-
ras et al. 2017; Liu et al. 2015). Besides, we use Interface-
GAN (Shen et al. 2020) and GANSpace (Härkönen et al.
2020) for editing.

Baseline We compare our method with various GAN In-
version methods, including the optimization-based methods
I2S (Abdal, Qin, and Wonka 2019) and PTI (Roich et al.
2022) and encoder-based methods. pSp (Chang and Chen
2018), e4e (Tov et al. 2021) and Restyle (Alaluf, Patashnik,
and Cohen-Or 2021).

Implementation Details Our experiments use the pre-
trained StyleGAN generator and the e4e encoder. The size
of the input and output images of the network are both 1024
× 1024. λLPIPS , λIDandλedit in Eq. (6) and Eq. (8) are
set to 0.8, 0.2 and 0.5, respectively. We used the ranger op-
timizer (Yong et al. 2020) with the learning rate set to 0.001
and the batch size set to 2 and trained 100000 steps on a
3080 GPU.



Input PITI2S Restyle pSp e4e CDIC

optimisation-based encoder-based

Figure 3: Comparison of reconstruction quality. Our method
is comparable to optimisation-based methods and retains
more detail.
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Figure 4: Editing quality comparison. Optimisation-based
methods are less editable, so we mainly compare them with
encoder-based methods. It can be seen that our method has
higher fidelity while retaining editability.

Reconstruction Quality
Quantitative Evaluation We compared our method with
the mainstream encoder-based methods. The results of the
quantitative comparison of the quality of the inverted images
are shown in Table 1. We offer the L2 distance, the LPIPS
(Zhang et al. 2018) distance, and the ID (Richardson et al.
2021) score between each reconstruction and source. Ad-
ditionally, we perform and compare the network inference
time. These metrics are computed on the first 1000 images of
CelebA-HQ. As can be seen from the data, the method sig-
nificantly outperforms both the encoder-based baseline and
the optimization-based baseline in terms of reconstruction
quality. It is also significantly faster than the optimization-
based method in inference.

Qualitative Evaluation Fig. 3 demonstrates the quali-
tative comparison of CDIC with PTI, Restyle, pSp, and
e4e. While optimisation-based techniques often enable ac-
curate reconstruction, they are computationally expensive.
CDIC provides visually comparable results, but the infer-
ence time is orders of magnitude faster. Compared to one-
shot encoders (pSp and e4e), CDIC better captures the input
identity (third row). Compared to recent ReStyle encoders,
CDIC still better reconstructs finer details such as complex

Method L2 ↓ LPIPS ↓ ID ↑ Time(s) ↓
I2S 0.020 0.09 0.78 156

PTI 0.015 0.09 0.85 283

pSp 0.034 0.17 0.56 0.11

Restyle 0.041 0.19 0.52 0.46

e4e 0.052 0.20 0.050 0.11

CDIC 0.010 0.09 0.87 0.24

Table 1: Quantitative comparison for inversion quality on faces.
The horizontal lines in the table delineate the optimisation-based
methods, the encoder-based methods and our method

hairstyles (hair on the right ear part of the third row of im-
ages) and backgrounds (star-spangled banner in the back-
ground of the first row of images).

Editing Performance

Qualitative Evaluation Fig. 4 demonstrate a qualitative
comparison of the editing performance of SDIC with the
baseline methods. The first row gives an image of a face
occluded by a hand and the last row shows an image of a
face with a large angular rotation. Existing methods cannot
faithfully reconstruct these challenging images. They pro-
duce distorted results and artefacts in both inversion and
editing. In contrast, with the proposed contextual informa-
tion complementation, our method is more robust and pro-
duce high fidelity results. In addition to the improved ro-
bustness, CDIC successfully preserves more details such as
the background (fourth row), shadows (second row), attach-
ments (third row), and expressions (fourth row).

Conclusion

In this paper, we propose a method to solve the task of text-
driven image attribute editing, which is carried out in the
context of Generative Adversarial Network inversion. The
innovative approach we propose leverages contextual infor-
mation completion to overcome the Distortion-Edit trade-off
dilemma. By introducing the Contextual Distortion Informa-
tion Prediction Network and a Context Information Fusion
module, our method significantly improves image fidelity
while maintaining editability. Through empirical verifica-
tion, our method shows significant improvements in image
fidelity and perceptual quality while maintaining editabil-
ity. Compared with existing GAN inversion methods, our
method can better retain specific image details while provid-
ing higher reconstruction quality and editing performance.
Our method has potential practical applications in various
applications, including high-resolution face synthesis, im-
age super-resolution, restoration of oil painting effect im-
ages, style transfer, image-to-image translation, and repre-
sentation learning.
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