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Abstract

Data-free Knowledge Distillation allows learning the student
network from the teacher network without the need for train-
ing data, thereby making the model more lightweight while
reducing the model computation and memory requirements,
all while maintaining relatively high performance. In the con-
text of image super-resolution, the data-free knowledge dis-
tillation method faces difficulties in ensuring the diversity of
training data generated within the same training batch and
across different batches. Thus, we modified the data genera-
tion approach of the DFSR generator, introducing Contrastive
Memory Inversion (CMI) to enhance the differences between
the samples generated in each instance and the historical sam-
ples in the memory bank, thereby increasing sample diversity.
Experimental results demonstrate that our proposed network
can achieve better results than DFSR for both quantitative and
qualitative results.

Introduction

Deep learning has achieved significant success in numerous
domains, including image recognition (Pak and Kim 2017),
natural language processing (Chowdhary and Chowdhary
2020), and image super-resolution (Yang et al. 2019). Over
the past few decades, images have become a crucial medium
for transmitting information over the internet. While the
performance of various hardware has improved signifi-
cantly, many small devices are unable to accommodate
high-performance hardware. Yet, these devices are expected
to display clear images by obtaining high-resolution im-
ages from low-resolution cameras. Moreover, the bandwidth
costs associated with image transmission may be substan-
tial, which can be reduced effectively by image compres-
sion technology. Therefore, image super-resolution(ISR) has
come into people’s focus.

The underlying principle of ISR (Hunt 1995) based on
deep learning involves training a neural network using a
dataset comprising a large number of low-resolution and
high-resolution images. This training allows the neural net-
work to learn the mapping relationship from low to high res-
olution. When a pre-trained image super-resolution model
is deployed on hardware-constrained devices, it allows for
obtaining high-quality images at a relatively low cost.

Numerous successful works (Dai et al. 2019; Niu et al.
2020; Wang et al. 2022) have been developed based on the
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Figure 1: Framework of data-free knowledge distillation for
image super-resolution.

aforementioned principle. However, these models are be-
coming increasingly complex and demanding in terms of
computability. Consequently, there is a growing demand
for structurally simplified yet high-performing models. To
achieve better models, knowledge distillation (Zhao et al.
2022) methods are being explored. The objective of knowl-
edge distillation is to extract concise and high-performance
student models from extensive pre-trained teacher models,
which have high requirements for datasets and often perform
poorly in the absence of a suitable dataset due to some pri-
vacy or transmission constraints. Data-free training based on
generative models can address this issue. However, genera-
tive networks commonly suffer from mode collapse, where
the generated instances turn out to be highly similar to each
other.

To mitigate this mode collapse issue, we introduce
the contrastive learning approach into data-free distillation
methods for image super-resolution tasks to enhance the di-
versity of training samples. Our method consists of two com-
ponents: image generation and knowledge distillation. Un-
like traditional data-free knowledge distillation where the
entire training samples for an epoch are synthesized at once,
We adopt a contrastive model inversion (CMI) approach
to progressively synthesize new samples that can be easily
distinguished from historical samples in the memory bank.
The generator network generates a low-resolution image
based on noise, while the student network can learn knowl-
edge from the teacher network through distillation loss with
the guidance of the high-resolution images provided by the



teacher network. To further improve the diversity of the gen-
erated data, we propose to use adversarial loss to optimize
the generator to maximize the difference between the student
network and the teacher network. Besides, a reconstruction
loss is introduced to optimize the generator to make the gen-
erated images closer to the original data distribution by con-
straining the downsampled output from the teacher network
to be consistent with the low-resolution images generated
by the generator. Experimental results demonstrate that our
proposed network can achieve good results even without the
original training data.

Related Work

Image Super-Resolution (SR) aims to generate a high-
resolution image from the low-resolution version. While
there are urgent demands for applying image superresolu-
tion networks to mobile devices such as cellphones and cam-
eras, recently, efficient and lightweight SR networks have
attracted increasing interest in the computer vision commu-
nity. Knowledge distillation is a common method for obtain-
ing lightweight models, and researchers have made many at-
tempts in this regard.

The work (Gao et al. 2019) involves generating var-
ious statistical representations from feature maps as a
means of extracting valuable information from teacher
super-resolution networks. (He et al. 2020b) introduce a
method called Feature Affinity-Based Knowledge Distilla-
tion (FAKD) for enhancing the distillation performance of
super-resolution networks. This approach leverages feature
map correlations to improve the knowledge transfer process.
In addition, (Hui, Wang, and Gao 2018) and (Jiang et al.
2018) design new structures to perform distillation between
different parts of the model and improve the performance of
the lightweight super-resolution network.

The methods mentioned earlier produce efficient mod-
els that deliver strong performance while demanding min-
imal computational resources. Nevertheless, implementing
these techniques typically necessitates access to the origi-
nal training dataset. In real-world scenarios, this dataset is
frequently unavailable due to privacy or data transfer con-
siderations. Consequently, it becomes crucial to investigate
data-free model compression approaches.

Data-Free Knowledge Distillation geared to learn a
portable network without any training data. The primary task
of these methods is to obtain training data. (Nayak et al.
2019) represent the teacher network’s output as a Dirichlet
distribution and repeatedly manipulate input noisy images
to generate a set of training samples. In contrast to the itera-
tive optimization of noise images, (Chen et al. 2019) utilize
a Generative Adversarial Network (GAN) to create training
samples. They achieve this by adjusting the generator net-
work’s parameters using a tailored combination of one-hot
loss, information loss, and activation loss, all customized ac-
cording to classification characteristics. This data-free learn-
ing method (DAFL) introduces an innovative framework and
manages to maintain an accuracy drop of less than 5% on
both CIFAR-10 and CIFAR-100 datasets. In a similar vein,
(Micaelli and Storkey 2019) and (Fang et al. 2019) em-

ploy generators to create training images. However, their
approach differs from DAFL in that they view the gener-
ation and distillation processes as intertwined, making the
generator responsible for producing images that encourage
a discrepancy between the student’s and teacher’s outputs.
Simultaneously, the student network is trained to mimic the
teacher network.

In particular, data-free knowledge distillation places
greater requirements on the generated data for the follow-
ing reasons: the generated data must exhibit a wide range
of variations to ensure that the student model can acquire
comprehensive knowledge from this diverse dataset.

Contrastive Learning is an effective way to address
model collapse issues where the synthesized instances are
highly similar to each other and thus show limited effective-
ness for downstream tasks (Fang et al. 2021). Contrastive
learning has made significant advancements in the realm of
self-supervised learning (He et al. 2020a). Its core idea is
to treat every sample as a unique category and focus on
teaching the model how to differentiate between them. In
this work, we take a fresh look at the contrastive learning
framework from a different angle, leveraging its capacity for
instance discrimination to capture the diversity of generated
data.

Method
3.1 Data-Free Learning for Super-resolution

DFSR(Zhang et al. 2021) demonstrates that utilizing a data-
free knowledge distillation framework for super-resolution
networks not only safeguards user privacy but also provides
superior compressed models.

Training Samples Generation In super-resolution tasks,
models take low-resolution images as input and output high-
resolution images. Denote G as the generator to produce
training samples, given a random variable z from a distri-
bution p, as input, the image synthesized by the generator
network is G(z). The super-resolution result of G(z) using
teacher network 7 is 7 (G(z)). Then we rescale T (G(z))
to the size of G(z) and get R(T(G(2))). Generator G is ex-
pected to produce samples which follow the distribution of
the dataset and for a dataset image I, its Igy stays con-
sistent with itself, then R(7(G(z))) should be consistent
with G(z). Therefore we propose a reconstruction loss for
the generator, which is formulated as Eq. (1):

L= Fecpi | L IRTGE) - 6@ |

We use the adversarial loss to distill from teacher super-
resolution networks without access to the original or related
datasets. The generator network is optimized to produce
hard samples to maximize the model discrepancy between
teacher and student. The adversarial loss Lo gy is formu-
lated as:

Lopy = —log(Lxgp +1) 2
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Figure 2: Framework of data-free knowledge distillation based on contrastive learning. The generator is trained with reconstruc-
tion loss, Contrastive Loss, and adversarial loss to synthesize images that are similar to the original data. The student network
is then obtained utilizing progressive distillation from the teacher network.

L p is formulated as:
Lrp = Erep, () [IT () = S(z)|1] 3)

where z is the training sample and p,(z) is the distribution
of the original dataset. Therefore, the loss function to opti-
mize the generator can be formulated as:

Lo =Lcen +WRrLR 4

where Wk, is the trade-off hyper-parameter to balance the
two terms.

Progressive Distillation Using the progressively distill-
and-refine approach involves initially training a small stu-
dent network and then gradually increasing the number of
layers or blocks. More specifically, for a super-resolution
network &, its function can be formulated as S(z) =
St (Sp (Su(x))), where z indicates the input of S, Sy, Sp
and St indicate the head, body and tail of S respectively.
Given that Sp contains N layers or blocks, we can split it
into P parts {B;}(;pen+ and train {B;}o; pen+ in
P steps. Initially, based on Sz7 , St and By, we build a net-
work Sy and initialize it randomly. The function of Sy can
be formulated as S(0) = St (Bo (Sg(x))). In the process of
training Sy, the knowledge distillation loss is Sy formulated
as:

IIT( (2)) =SiG)IL | G

»CKDsi = EzEpz (2)

where 0 < i < P,i € N. After training Sy for several steps,
we add B into Sy and get Sy, which performs as §; =
St (B1 (Bo (S(z)))). Then when training Sy, we initialize
S; with trained Sy and use the strategy of training Sy to train
Si.

3.2 Contrastive Model Inversion

The data-free knowledge distillation method faces difficul-
ties in ensuring the diversity of training data generated
within the same training batch and across different batches.
Thus, we have modified the data generation approach of
the DFSR generator, introducing Contrastive Model Inver-
sion (CMI) to enhance the differences between the samples
generated in each instance and the historical samples in the
memory bank, thereby increasing sample diversity.

Model inversion, as a vital step for data-free knowledge
distillation, aims to recover training data X’ " from a pre-
trained teacher model f; (x;0;) as an alternative to the inac-
cessible original data X. (Choi et al. 2020) combined three
inversion frameworks for data-free knowledge distillation:

ﬁinv = ﬁbn(x) + ﬁ . ﬁcls(x) + - »Cadv (ZL’) (6)

where «, § and v are balance terms for different criteria.
Lo, Leis, Lady refer to Eq. (7), (8) and (9) respectively.

Lin(z Z DNV ot (2)) , N (i, 0t)) (D)

Les(x) = CE(fi(x),c) (®)
Laav(x) = =KL (fe(x)/7| fs(x)/7) ©
The aforementioned loss does not account for the diver-
sity of generated samples. CMI models data diversity by ad-
dressing instance discrimination in the problem. First, given
a set of data X', an intuitive description of data diversity
would be “how distinguishable are the samples from the
dataset”, which reveals a positive correlation between the
diversity and instance distinguishability. Thus if we have a
certain metric d(x1,x2) to estimate the distinguishability
for an instance pair {x1,z2}, then we can develop a clear
definition for data diversity as the following:

['div(X) = Exl,xgeX [d (1'1; I2)] (10)



where d (21, z2) will be applied to all possible (z1, x2) pairs
from X.

We introduce another network A (-) as an instance discrim-
inator upon the teacher network f; that accepts feature f;(x)
as input and projects it into a new embedding space. For sim-
plification, we use v = h(x)to represent v = (ho f;) (x)
because the teacher network is fixed. In the new embedding
space of h(+), we use simple cosine similarity to describe the
relationship between data pair x1 and x2 as the following:
_ (b))

[P Gzl ([ (z2)]

For each instance x € X', we construct a positive view
2" by random augmentation and treat other instances 2~ as

negative ones. The contrastive learning loss is formalized as
follows:

sim (x1, 2, h)

exp (sim (.Z‘i, T h) /T)

Ej exp (sim (J:i, z;, h) /7')

(12)
where 7 denotes the temperature. Discriminator h(-) can
learn how to distinguish different samples by pushing posi-
tive pairs closer and pulling negative pairs apart, which pro-
vides a “contrast” metric for any d (x1, x2) pair.

Ecr(Xv h) = 7Ex1€X IOg

3.3 Optimization

By combining all the aforementioned loss functions and the
progressive distillation method, we obtain the final objective
functions (13) for the generator and (14) for the student
respectively.

Lo =LceN + WRLR +WcLer (13)
where WrWcandWy is the hyper-parameter.

Ls=Lkps,_, (14)
Our training strategy is summarized as Algorithm. 1. We
apply an iterative and progressive training strategy to opti-
mize generator } and student network S. While given stu-
dent network S and the number of segments of student net-
work body P , we construct a set of tiny student networks
{Si (#;0°) }o<i< picn+- Then we train S; in turn and initial-
ize S; 1 with trained S;. The training process of S; and G
are performed alternately. In one iteration, we fix the gener-
ator G, calculate knowledge distillation loss with Eq. (15),
and then update the parameter of S; via backward propa-
gation. After updating S; for several steps, we fix the pa-
rameter of S; and calculate Eq. (13) to optimize G. It’s
worth noting that when we start training S; 1, the gener-
ator G will not be reinitialized. After all the networks in
{8i (2;0°) }o<ic picn+ are trained according to the preced-
ing procedure, the training process of our student network S
is complete.

Experiments
In this section, we conduct extensive experiments to com-
pare the effectiveness of the proposed data-free distillation
method and our method on various super-resolution datasets.

Quantitative and qualitative results are compared with base-
lines of VDSR.

Algorithm 1: Data-Free Knowledge Distillation For Image
Super-Resolution Based On Contrastive Learning

Input: A pre-trained super-resolution teacher model 7; P
indicates the number of student body segments; M denotes
batch size; p(z) denotes noise prior.
1: Initialize: Randomly initialize a student model S(z; 6°)
and a generator G(z; 69)
2: Initialize Set {S; (2:0°) }o<, . p;cn+ ased on S(x;6%)
and G(x; 69) randomly.

3 B+ 0

4: Initialize discriminator h(-; 6},)

5: for k =0to P do

6: Initialize Sk < Shax(k—1,0)-

7: for number of training iterations do

8: Imitation Stage:

9: for £ steps do

10: Sample noise images {2}, </ from p(z).
11: Get generated images {G(z%)} + {2'}.
12: Obtain SR results {7(G(z%))}, {Sk(G(z")}.
13: Calculate loss Lg, via Eq. (14).

14: Update 0% with VLg, .

15: end for

16: Generation Stage:

17: x < G(z;0,)

18: xp < sample(B)

19: Calculate loss Lg with Eq. (13).
20: 24 2z—nV,Lg
21: Og — 04— ’17V99£g
22: 0 < 0 — nVQhﬁg
23: end for

B+ Bu{z}

24: end for=0

Output: Output the trained student network S(z; 6*).

4.1 Baselines

A bunch of baselines are compared to demonstrate the effec-
tiveness of our proposed method. The baselines are briefly
described as follows.

Teacher: the given pre-trained model which serves as the
teacher in the distillation process.

DFSR: the student trained using the methodology de-
scribed in DFSR.

Ours: the student trained with images generated through
CML

4.2 Experiments on VDSR

Firstly, we experiment with our method on VDSR (Kim,
Lee, and Lee 2016). We choose the VDSR model as the
teacher super-resolution model and then halve the number of
channels in the teacher network to get our student network
(denoted as VDSR-half). we use 291 images as in for train-
ing and Set5 for validation in our experiments. The method
is implemented based on the open-source Pytorch code of
VDSR. Optimizers for the student and generator are SGD
and Adam.

We use three generators corresponding to three super-



Table 1: Quantitative results (PSNR/SSIM) of VDSR in different experimental settings.

VDSR
Dataset | Scale Teacher Bicubic DFSR Ours

PSNRT | SSIM7T | PSNRT | SSIMT | PSNRT | SSIMT | PSNRT | SSIM

x2 37.65 0.9046 33.69 0.8475 37.13 0.8886 37.22 | 0.8857

Set5 x3 33.77 0.8221 30.40 0.7337 33.32 0.8005 33.41 | 0.8019
x4 31.46 0.7404 28.41 0.6323 30.99 0.7175 31.08 | 0.7191

x2 33.15 0.8282 30.33 0.7623 32.80 0.8151 32.84 | 0.8132

Set14 x3 29.87 0.7124 27.23 0.6317 29.55 0.6922 29.58 | 0.6918
x4 30.45 0.7109 28.03 0.6311 30.16 0.6945 30.18 | 0.6947

Bicubic

Teacher

DFSR

Figure 3: x4 super resolution results of head from Set5 on VDSR

resolution scales to generate images for distillation. During
each training update, we randomly select a scale among X2,
x3, and x4. Only the generator corresponding to the selected
scale constructs the mini-batch and undergoes an update.
The student network and all generators are randomly ini-
tialized. Throughout the optimization process, the learning
rate for the student network is initially set to 0.1 and then
decreased by a factor of 10 every 10 epochs. As for the gen-
erators, the initial learning rate is set to le-5 and decayed
following the same strategy as the student network.

Table 1 shows the performance of the student model ob-
tained with different methods. In this table, Teacher indi-
cates the pre-trained teacher model, and DFSR indicates the
original method. As is shown in the table, our method per-
forms significantly better and achieves results close to train-
ing with the original dataset. The visual qualities of the same
architecture using different training strategies are shown in
Figure 2. Our method shows similar visual quality with stu-
dents trained with the original dataset and performs better
than training using DFSR and bicubic results.

Conclusion

In this work, we introduce Contrastive Model Inversion
(CMI) to the vanilla DFSR generator to guarantee the diver-
sity of synthetic data, which can bring significant benefits for
downstream distillation tasks. Then, the reconstruction loss

and the adversarial loss are utilized to train the generator for
approximating the original training data as well as making
a difference in the results of teachers and students. Further-
more, we adopt a Progressive Knowledge Distillation train-
ing strategy to distill additional insights from the teacher net-
work and enhance the training of the student network. Exten-
sive experiments demonstrate that our method can produce
student networks with better results without training data,
which meets the urging demand of resource-constrained de-
vices. In addition, the method can be transferred to other
tasks such as image denoising and inpainting with a sim-
ilar framework. Finally, the field of Data-Free Knowledge
Distillation remains to be explored, our work only glimpses
the tip of this area and may it provide inspiration for future
works.
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