
Dense Depth Estimation by Fusion of Millimeter-Wave Radar Point Cloud and
RGB Image Information

Xiaolong Feng, Qian Liu, Yansong Liao, Xipeng Liu, Peng Lu
Artificial Intelligence Research Institute,Xiamen University,Fujian,China

{36920231153189,36920231153215,36920231153213,36920231153216,23320231154414}@stu.xmu.edu.cn

Abstract

Depth estimation plays a pivotal role in the context of au-
tonomous driving, offering vital distance information crucial
for environmental awareness, obstacle detection, path plan-
ning, and ensuring safe driving practices. Nevertheless, tradi-
tional camera-based solutions face inherent limitations with
their 2D output, lacking direct depth information. To address
this shortfall, active sensors such as LiDAR and radar be-
come indispensable for providing comprehensive assistance.
Recent advancements in computer vision, particularly with
visual transformer networks, have showcased remarkable per-
formance across various tasks, notably excelling in depth
prediction compared to conventional deep learning meth-
ods. This study explores the potential of visual transformers,
specifically BatchFormer, in seamlessly integrating monocu-
lar images with radar-reflected point clouds to achieve robust
monocular dense depth estimation. The efficacy of this in-
novative depth estimation approach was rigorously evaluated
using the mini edition of nuScenes dataset.

Introduction
In recent years, autonomous driving technology has made
significant advancements, leading the way for the future
of transportation and traffic safety. Mainstream autonomous
driving systems are typically equipped with a variety of sen-
sors, including LiDAR, cameras, radar, and ultrasonic sen-
sors, to perceive the surrounding environment. Dense depth
estimation plays a crucial role in autonomous driving, as it
predicts depth information for each pixel from RGB im-
ages, providing vital environmental perception data. This
enables vehicles to accurately identify and track obstacles,
pedestrians, and other vehicles on the road, thereby improv-
ing path planning, collision avoidance, and ensuring safe
and efficient autonomous driving experiences. The capabil-
ity of dense depth estimation enhances the perception abili-
ties of autonomous driving systems, providing essential in-
formation for autonomous decision-making and behavior
planning, bringing autonomous driving technology closer to
achieving safe driving on real-world roads.

Challenges in dense depth estimation from RGB images
include accurately reconstructing three-dimensional depth
information from two-dimensional images and sensitivity
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to lighting conditions. Integrating information from diverse
sensors, like LiDAR and millimeter-wave radar, helps ad-
dress these challenges. LiDAR and millimeter-wave radar
provide direct distance measurements for objects, improving
the accuracy of RGB image-based dense depth estimation
and enhancing performance in various lighting conditions.

As an active sensor, LiDAR can accurately measure ob-
ject distances and is not affected by lighting conditions. In-
tegrating LiDAR point cloud information contributes to im-
proving dense depth estimation based on RGB images under
both strong and weak lighting conditions. However, LiDAR
is sensitive to weather conditions and performs poorly in ex-
treme weather, such as rain, snow, or fog. Additionally, its
high cost limits its widespread adoption.

LiDAR excels at measuring object distances accu-
rately but is weather-sensitive and expensive. In contrast,
millimeter-wave radar is cost-effective and thrives in ex-
treme weather conditions. Researchers are increasingly
focusing on addressing challenges related to integrating
millimeter-wave radar data with RGB images and develop-
ing powerful deep learning algorithms(Lo and Vandewalle
2021, 2023). The recent introduction of 4D millimeter-wave
radar has led to denser datasets with height measurement
capabilities, promising more robust performance in dense
depth estimation when fused with RGB images.

The main contributions of this paper include:

• We design a method for applying visual transformers to
fuse images and sparse radar reflections for depth estima-
tion. And a transformer is added to the network module
for feature extraction with a batchformer to improve per-
formance.

• Add a additional loss function for denser, dilated LiDAR
ground-truth data and propose a novel loss for infinitely
far regions based on semantic segmentation.

Related Work
The task of estimating depth can be categorized into two
groups: depth prediction and depth completion. Depth pre-
diction involves using camera data and ground-truth depth
information during training to generate dense depth maps.
In contrast, depth completion takes advantage of additional
sparse depth measurements as input, typically obtained from
LiDAR or radar sensors.



Camera Depth Prediction
Contemporary research primarily focuses on depth estima-
tion using monocular camera setups, avoiding stereo in-
formation. This is typically achieved through supervised
models. Notable approaches include VA-DepthNet (Liu
et al. 2023b) , which excels in camera depth prediction on
the KITTI benchmark, and Single Image Depth Prediction
Made Better (Liu et al. 2023a) , which estimates multivari-
ate Gaussian distributions for depth at each pixel. iDisc (Pic-
cinelli, Sakaridis, and Yu 2023)leverages high-level environ-
mental patterns for supervised monocular depth prediction.
There is also CADepth-Net(Yan et al. 2021), a competi-
tive self-supervised approach using image disparity between
consecutive frames.

Depth Completion
we give an overview of the field of depth completion. Cur-
rent approaches addressing this task are presented, and dif-
ferent sensors and data sources are discussed.

LiDAR Depth Completion LiDAR data is widely used in
computer vision tasks due to its dense and accurate point
cloud representation. However, it has limitations, such as
high cost and performance issues in adverse weather con-
ditions(Masoumian et al. 2022; Wang 2021). Recent stud-
ies have explored using LiDAR data for depth comple-
tion, with approaches like CompletionFormer(Zhang et al.
2023), DynSPN(Lin et al.), and SemAttNet(Nazir et al.
2022) emerging as state-of-the-art methods on the KITTI
dataset(Geiger et al. 2013). CompletionFormer combines
convolutional attention with vision transformer blocks, Dyn-
SPN combines a spatial propagation network with dynamic
affinity matrices, and SemAttNet fuses RGB images, LiDAR
scans, and semantic segmentation (Soydaner 2022).

Radar Depth Completion Radar sensors, compared to
LiDAR, offer a more cost-effective solution for mass pro-
duction and better performance in harsh weather conditions.
While radar lacks the same accuracy and point cloud density
as LiDAR, ongoing research explores its potential in depth
estimation. Most existing approaches use fully convolutional
models, with recent studies incorporating transformer archi-
tectures for improved efficiency.

Radar, Semantic Segmentation, and Depth Completion
Some studies have examined combining semantic segmen-
tation with radar data for depth completion. While these
studies show the benefits of radar information for depth es-
timation, further quantification of the added value is needed.
Innovative approaches use a coarse depth map initially pre-
dicted from camera and radar features and employ a separate
branch for semantic segmentation to refine depth maps, even
in challenging conditions.

Visual Transformers
Visual transformers, introduced by Vaswani et al(Vaswani
et al. 2017)., have gained popularity for their ability to han-
dle long-term dependencies. Dosovitskiy et al(Dosovitskiy
et al. 2020). made significant advancements by replacing the
conventional encoder with a transformer model, resulting

in remarkable performance improvements in various vision
tasks. Despite computational challenges in the initial imple-
mentation, recent work has addressed these issues, making
transformer-based models more efficient and practical for
real-world applications.

Our method
Our architecture adheres to established practices for depth
estimation, employing the widely-recognized U-net archi-
tecture .This approach, based on a fully convolutional au-
toencoder, incorporates spatial skip connections to lever-
age fine-grained features. Noteworthy is the replacement of
the convolutional encoder block in the U-net with the batch
transformer backbone, a strategic decision in our model ar-
chitecture design. This modification, detailed by (Hou et al.
2022) .The overall architecture is shown in Figure 1.

U-net Architecture
Encoder The encoder consists of four Transformer blocks
designed to reduce spatial dimensions. In the original work
(Yang et al. 2022), various embedding sizes and head counts
were proposed as hyperparameters. Larger values for these
hyperparameters often lead to better performance, albeit at
the expense of increased computational complexity. No-
tably, in this context, we downsample the feature maps by a
quarter in the first layer, as opposed to the more conventional
half, aiming to reduce the computational load of subsequent
attention layers.

Decoder Consisting of five corresponding upsampling
stages, our approach applies bicubic interpolation layers in
each step for rapid and effective upsampling. Following
this, a more substantial dense block is employed for post-
processing(Lee et al. 2022).

Starting from the second upsampling stage, a deep com-
putation block is utilized to generate intermediate depth
maps. The primary purpose of the first convolutional layer
within each block is to reduce the dimensions or complexity
of the extensive feature maps, typically containing a large
number of channels (often in the hundreds). This reduction
aims to transform the feature map into a new representation
with a significantly smaller number of channels, typically
32 channels in this context. Another convolutional layer pre-
dicts depth values by computing a single feature map. Sub-
sequently, a sigmoid function is applied to obtain a depth
map within the (0, 1) range. These intermediate depth maps
are then concatenated with the features of the current stage,
serving as guiding inputs for the subsequent stages of the
decoder.

Semantic segmentation Branch
We incorporated a semantic segmentation branch to inves-
tigate the possible advantages of utilizing semantic data in
depth estimation. This branch is seamlessly integrated into
the third stage of the depth decoder and functions alongside
skip connections from the corresponding attention layers. Its
primary goal is to produce two intermediary segmentation
maps, which are displayed in Figure 1. These segmentation
feature maps are then combined with depth feature maps and



Figure 1: model architecture

forwarded to the depth activation block, resulting in the gen-
eration of the depth map. For streamlining this workflow, we
reduced the number of categories to 21, aligning with the
Cityscapes dataset and adhering to mseg’s standard imple-
mentation.

Batch Former
In order to extend batched attention mechanisms to pixel-
level feature maps, we introduced the BatchFormerv2 archi-
tecture(Hou et al. 2022).

Zi = softmax(
QiK
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C
)Vi,Z = concat(Z1, . . . ,ZN ) (1)

For a specific block with spatial dimensions H and W , the
number of image blocks, N , is given by N = H ×W . Dur-
ing training, for each spatial position i = 1, . . . , N , the fea-
tures of a batch of blocks at the current position are treated
as a sequence. That is, there are N sequences, each with a
length of B. Subsequently, all these sequences are fed into a
shared Transformer block.

Total Loss Functions
To optimize the depth maps, we utilize an RMSE (Root
Mean Squared Error) loss function. Furthermore, we ap-
ply this reconstruction loss to a dilated point cloud, created
through a 5×5 dilation with a single iteration. This augmen-
tation significantly increases the number of relevant points,
providing more robust guidance for the model to achieve su-
perior reconstruction.

In the segmentation branch, we utilize a Focal loss (Lin
et al. 2017). This modified version of the standard Cross-
Entropy loss assigns greater importance to challenging ex-
amples. This approach enables the model to focus more on
the minority class, leading to improved performance. This
strategy is particularly beneficial for datasets with imbal-
anced classes, such as those encountered in autonomous
driving scenarios.

Both loss functions were incorporated within a Percep-
tual loss (Johnson, Alahi, and Fei-Fei 2016)inspired frame-

work, designed to enforce similarity to the target ground
truth depth map in the initial layers of the decoder.

The ultimate loss function is a variant of the Contrastive
loss function (Arora et al. 2019), which we refer to as the
Infinity loss. The concept is to leverage pre-existing corre-
sponding segmentation maps to identify regions with infinite
depth values, such as the sky. For each pixel’s value in the
predicted depth map [formulate] located in these regions,
it is adjusted towards zero (considering an inverted depth
map where closer objects have values closer to 1). Any other
pixel in the predicted depth map with a value below a certain
threshold is elevated above this threshold using a Hinge loss
approach (Lin 2004).For an individual pixel in the predicted
depth map,the loss is given by

Linfinity(ŷ, y, ft) =

(1− y) ·max(0, ŷ)+y ·max(0, ft− ŷ)
(2)

where ŷ is the predicted value,y ∈ 0, 1 where 0 is an index
for sky-segmented pixel ,1 others.ft is the true threshold for
skies,chosen as low ft = 1e−2,to penalize only the pixels
that have been ”segmented” as infinitedly far away.

Experiment
Datasets
The input data for our foundational model is diverse, com-
prising six feature maps—three sourced from the camera
and three from the radar. Specifically, these include an RGB
image from a monocular camera, alongside radar data con-
taining information on distance, radial velocity, and radar
flow. Our data preprocessing and ground truth generation
pipeline follow the methodology outlined in (Y. Long and
Narayanan 2021). We parse the description files of the
nuScenes dataset to categorize the data into day-clear and
challenging scenes. Subsequently, the samples are parti-
tioned into training, validation, and test sets, maintaining a
distribution ratio of 0.8, 0.1, and 0.1, respectively.

RGB Images To enhance the efficiency and precision of
our analysis, we perform cropping on the original image data
from the nuScenes dataset. The resolution is reduced from
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Figure 2: Inputs and outputs of the model.

900×1600 to 416×800. This adjustment is made to focus ex-
clusively on the pertinent section of the environment con-
taining LiDAR ground-truth data, all the while retaining a
relatively high resolution to facilitate accurate depth estima-
tion, especially for fine details.

Radar Data Given the sparse and limited nature of raw
radar data, we adopt a super-resolution technique, as pro-
posed by Long et al(Y. Long and Narayanan 2021), to en-
hance the density of radar data points for each frame. This
involves leveraging a consecutive sequence of frames span-
ning a total time of 0.3 seconds before the current frame,
effectively accumulating all reflections. It is crucial to com-
pensate for ego-motion within this timeframe. Radar sen-
sors feature a function that enables instantaneous velocity
measurement in the radial direction using the Doppler ef-
fect. However, this approach introduces a challenge, as it
cannot measure the tangential speed of moving objects in
the scene. Additionally, we utilize radar flow to gain a better
understanding of dynamic scenes. In our approach, where a
dedicated segmentation branch is employed to enrich object-
level comprehension, we opt not to use MER (multi-channel
enhanced radar)(Y. Long and Narayanan 2021)for the sake
of clarity and conservation of computing resources.

Ground-Truth Data During the training process, obtain-
ing ground-truth information for pixel-wise depth and se-
mantic segmentation of the camera images is imperative.
The depth-ground-truth data for each frame constitutes a
feature map derived from the combination of 21 subsequent
and four previous scans from a 32-beam LiDAR. These
scans are accumulated and then projected onto the image
plane of the RGB image, accounting for proper ego-motion
and external calibration parameters. In the realm of semantic
segmentation, moving vehicles undergo segmentation and
motion compensation.It’s noteworthy that the chosen max-
imum depth is 100 meters, which may result in higher er-
rors compared to the standard 50 meters employed in other
works. To address this, ground-truth values are inverted to

circumvent issues such as infinity at longer distances.

Implementation Details
Experimental Settings A single 3080 GPU is utilized for
both the training and testing phases in all experiments.The
initial learning rate is set at 4e−5, and during the fine-tuning
stage, it progressively descends from 2e−5 to 8e−6. In our
exploration of various novel optimizers, we opted for the
DiffGrad optimizer(S. R. Dubey and Chaudhuri 2019), in-
corporating the concept of leveraging the gradient norm
from previous iterations(S. R. Dubey and Chaudhuri 2023)
and a dynamic weight-decay coefficient. Additionally, we
employ the OneCyclicLR scheduler(Smith and Topin 2018),
characterized by a robust learning rate warm-up that claims
to achieve super convergence. In our study, we implement a
5 epoch-long warm-up, equivalent to about 20,000 optimizer
steps.

Metrics In the initial phase of our experiments, we em-
ploy the standard evaluation metric RMSE, known for its re-
silience to outliers compared to regular RMSE, Mean Abso-
lute Error (MAE), and Absolute Relative Error (Abs-REL).
The latter calculates the mean percentage of the prediction
error.

RMSE =

√√√√ 1

m

m∑
i=1

(yi − f(xi))2 (3)

Where yi represents the true values, f(xi) denotes the
predicted values, and m signifies the quantity of test data.

Result Analysis
The model comprises a semantic segmentation branch and
a depth prediction branch, where the loss is calculated as
the weighted sum of both branches. The scenario pertains to
a well-defined daytime field of view.Figure 2 illustrates ex-
emplary inputs and outputs of our model, demonstrating an
achieved RMSE error of 5.4.The LiDAR depth ground truth,



derived from a total of 25 LiDAR scans, is projected onto the
RGB camera image. We present both a supervised segmen-
tation prediction aiming to reconstruct the ’quasi-ground-
truth’. The baseline model employed in this study is a U-net,
incorporating convolutional layers and skip connections.

Conclusion
In this study, we explored the synergistic effects of inte-
grating visual transformers, radar data, and semantic seg-
mentation into the domain of monocular depth estimation.
Our investigation revealed the transformative potential of
transformers for forthcoming applications. Our experiments
demonstrated that radar data significantly influences the fi-
nal outcomes by enabling the model to learn correspon-
dences and encode them directly into the weights. Despite
the promising outcomes achieved, there exist promising av-
enues for future research to enhance performance. Primarily,
two key approaches stand out for augmenting the effective-
ness of our method: enhancing the quality of ground-truth
data or refining the model itself.
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