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Abstract

In the realm of phosphoproteomics, Data-Independent Ac-
quisition (DIA) outperforms Data-Dependent Acquisition
(DDA) in accuracy and reproducibility of quantification.
However, DIA’s reliance on spectral libraries, typically de-
rived from DDA analyses, limits its throughput and pro-
teome coverage. To address this, we introduce DPHO, a novel
deep learning framework for generating in silico phospho-
peptide libraries. By circumventing the construction of DDA
libraries, DPHO streamlines the phosphoproteome profiling
process. It offers enhanced phosphoproteome coverage and
facilitates the discovery of more signaling pathways com-
pared to conventional DDA-based methods. Utilizing a syn-
thetic phosphopeptide mixture from HeLa cell lysate and ad-
vanced mass spectrometry techniques, DPHO has demon-
strated superior efficiency in site localization. The frame-
work’s adaptability is further evident in its compatibility with
various fragmentation methods, including Multistage Acti-
vation (MSA), Electron Transfer Dissociation (ETD), and
Higher Energy Collisional Dissociation (HCD). In conclu-
sion, we aim to develop a phosphorylation site prediction tool
to achieve faster and more comprehensive DIA phosphopro-
teome profiling.
Keywords: DIA; Phosphoproteome; Phosphorylation sites;
Prediction; Deep learning

Introduction
Protein phosphorylation, a crucial post-translational modifi-
cation, is integral to regulating almost all cellular signaling
pathways. Phosphoproteomics, especially mass spectrome-
try (MS)-based techniques, have become pivotal in compre-
hensive studies of protein phosphorylation and the dynam-
ics of cell signaling[1,2]. Traditionally, these studies have
relied on data-dependent acquisition (DDA), which, despite
its utility, often encounters limitations such as constrained
throughput and inconsistent reproducibility due to the limi-
tations of MS sequencing speed and the semi-random nature
of DDA sampling[3].

The evolution of data-independent acquisition (DIA)
methodologies has significantly transformed proteomic pro-
filing[4]. DIA allows for the analysis of large sample sets
with enhanced quantification accuracy and reproducibility.
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This method has shown great promise in various fields, in-
cluding cellular signaling research, proteogenomic analysis
of clinical cancer samples, and the discovery of antiviral
drugs. A benchmark study by Olsen J and colleagues es-
tablished that DIA phosphoproteomics achieves better dy-
namic range, identification reliability, and enhanced sensi-
tivity and quantification accuracy compared to DDA-based
methods[5–7].

Despite these advancements, DIA phosphoproteomics
currently faces a critical challenge – the need for a high-
quality spectral library built before data. Most DIA phospho-
proteomic analyses require project-specific DDA libraries,
typically constructed from extensively prefractionated or
repeatedly injected samples. While these libraries offer
broader proteome coverage, they demand considerable time,
samples, and efforts, especially with prefractionation[8,9].

These challenges underscore the need for innovative
approaches to streamline the DIA workflow and maximize
its efficiency and effectiveness in phosphoproteomic stud-
ies. The development and implementation of such methods
could revolutionize our understanding of protein phosphory-
lation and its role in cellular signaling, opening new avenues
for research and therapeutic discovery[10,11].

An earlier study demonstrated the feasibility of con-
structing a DIA library directly from DIA data for exten-
sive phosphoproteome profiling[12,13]. This method, how-
ever, relied on data from a large number of DIA runs, mak-
ing it less practical. In contrast, in silico libraries, which
predict fragment ion intensities and retention times using
advanced machine learning techniques, offer an efficient
alternative. These libraries, especially those generated by
recent deep neural network technologies, can potentially
achieve proteome coverage comparable to or better than
traditional DDA libraries[10,14]. Despite their promise, in
silico libraries remain underexplored in DIA phosphopro-
teomic analysis. Existing deep learning methods, typically
employing LSTM or RNN architectures, are limited by
their linear amino acid embedding approach[15]. To address
these limitations, we developed DPHO, a novel deep learn-
ing framework specifically designed for phosphopeptides.
DPHO-generated in silico libraries have shown superior per-
formance in phosphoproteome profiling, outperforming con-
ventional DDA libraries in terms of speed and depth[14–16].



Related Work
When conducting DIA phosphoproteomic studies, re-
searchers quickly realize the critical importance of having a
comprehensive spectral library. Traditionally, these libraries
are painstakingly constructed through rigorous DDA experi-
ments. While DDA libraries tailored to specific projects pro-
vide extensive coverage of the proteome landscape, their
creation requires significant investments of time, effort,
and resources. However, a promising development amidst
these challenges is the emergence of computationally gener-
ated libraries[18]. Leveraging sophisticated machine learn-
ing techniques, these libraries have demonstrated remark-
able potential in the broader field of proteomics[19].

Nevertheless, upon closer examination, it becomes ap-
parent that the full potential of computationally generated
libraries in DIA phosphoproteomic data analysis is still
largely untapped. This represents a unique opportunity for
our proposed solution, called Model. Model represents an
innovative approach that seamlessly incorporates advanced
deep learning methodologies to address the intricate and
practical requirements of phosphoproteomics[20]. By lever-
aging deep learning techniques, we aim to overcome the
limitations of current spectral libraries and unlock unprece-
dented precision, efficiency, and transformative insights in
future research endeavors[21].

Through the integration of deep learning algorithms
into phosphoproteomics, our visionary approach seeks to
pave the way for exciting advancements in the field. By har-
nessing the power of these state-of-the-art methodologies,
we aim to revolutionize phosphoproteomic data analysis, ul-
timately propelling the understanding of cellular signaling
dynamics to new heights[23].

Result

Principle of DPHO

DPHO distinguishes itself in the realm of computational bi-
ology by pioneering a sophisticated approach to phospho-
peptide prediction[25]. This advanced model leverages a
progressively enriched peptide representation, adeptly cap-
turing both the intricate local and expansive global structures
of peptides for nuanced prediction. This is achieved through
a cutting-edge hybrid network design, a significant departure
from traditional methodologies.

The DPHO model utilizes a cutting-edge deep learn-
ing approach for predicting indexed retention time (iRT)
and the intensity of fragment ions for a specific phospho-
peptide. This process begins by taking the peptide sequence
and its precursor charge as the inputs[26-27]. Initially, a bi-
directional Long Short-Term Memory (bi-LSTM) network
is employed to create preliminary representations for each
amino acid in the sequence. These representations are fur-
ther refined through a Transformer module. Subsequently,
the refined, comprehensive features are processed through a
linear regression network, which is responsible for produc-
ing the final predictions concerning both the fragment ion
intensities and the iRT[28].

Figure 1: Model architecture of DPHO

At its core, DPHO is structured as a modular deep net-
work, comprising three specialized sub-networks. The first
is a recurrent network, specifically a bi-LSTM, tasked with
initial encoding of the peptide sequences. This bi-LSTM
lays the groundwork by embedding each amino acid into a
detailed vector representation. Subsequently, these represen-
tations are refined through two layers of bidirectional LSTM
units, allowing each amino acid to incorporate contextual in-
formation from its peers within the same peptide. Yet, it’s
notable that the bi-LSTM’s context encoding may have lim-
itations due to potential information loss over recurrent cy-
cles.

To address this and to harness long-range dependen-
cies within peptide sequences, DPHO introduces its second
module: a Transformer network. This network takes the ba-
ton from the bi-LSTM, enhancing the peptide representa-
tions with a multi-head self-attention mechanism. This inno-
vation enables simultaneous feature updates across all amino
acids, facilitating the model’s focus on multiple peptide re-
gions, regardless of their spatial separation. The final stage
of DPHO involves a linear regressor network. It receives the
newly formulated peptide representation and is responsible
for generating predictions for either fragment ion intensities
or indexed retention times (iRT).

DPHO’s specificity for phosphopeptide prediction is
further honed by incorporating additional tokens to repre-
sent various phosphorylated amino acids. These tokens are
learned in tandem with the base peptide embeddings. For
fragment ion intensity predictions, the model employs a
modified loss training approach, which adheres to the struc-
tural nuances of the peptides and selectively ignores non-
existent phosphate moieties[29].

DPHO’s utilization of the Transformer network, a first
in peptide fragmentation pattern prediction, marks a signif-



icant advancement, considering its extensive use in natural
language processing. An ablative study, comparing DPHO
with either bi-LSTM or Transformer models alone, as well
as a CNN-Transformer combination, further underscores its
efficacy. Using two phosphoproteomic datasets, DPHO con-
sistently surpassed these alternatives, demonstrating its su-
perior capability in capturing phosphopeptide features[30].
This suggests that the integration of bi-LSTM and Trans-
former models within DPHO is not only innovative but also
synergistically effective in peptide representation learning.

Accurate prediction of fragment ion intensity and
retention time for phosphopeptides.

To evaluate the effectiveness of the tool we developed,
two datasets (RPE1 DDA and RPE1 DIA) both collected
from RPE1 cells, one by DDA, the other by DIA acquisi-
tion methods, were searched by MaxQuant and Spectronaut
respectively to yield phosphopeptide identification results.
The data in each library was divided in a ratio of 8:1:1 for
the purposes of training, validating, and testing the DPHO
model, respectively. The performance of the trained DPHO
model was impressive, showing high correlation between
experimental and predicted fragment ion intensities for the
test set. Specifically, the model achieved a median Pearson
correlation coefficient (PCC) of 0.968 and a median spectral
angle (SA) of 0.881 for the RPE1 DDA dataset, and a me-
dian PCC of 0.903 and a median SA of 0.791 for the RPE1
DIA dataset (Figure 2).

Figure 2: Compared with other models

Evaluation of DPHO and three other models based on
the distribution of Pearson correlation coefficient (PCC) and
spectral contrast angle (SA) calculated between predicted
and experimental MSMS spectra from two datasets. Median
PCC and SA are indicated; n is the number of phosphopep-
tides in the test set. Boxplot center line, median; box lim-
its, upper and lower quartiles; whiskers, 1.5× interquartile
range.

Figure 3: Performance of model

In addition, DPHO showcased its capability in accu-
rately predicting indexed retention time (iRT) for the RPE1
DIA dataset, achieving a median absolute error (MAE) of
1.86 units. This performance highlights the tool’s effec-
tiveness in analyzing data from phosphoproteome profiling
(Figure 2). Additionally, DPHO demonstrated proficiency
in handling another dataset, U2OS DIA, by making precise
predictions of fragment ion intensity and iRT. The model
was particularly adept at predicting mono-phosphosite pep-
tides and phosphopeptides containing phosphorylated serine
(pS), likely due to the greater volume of data available for
these peptide categories during training.

The assessment of DPHO’s performance is conducted
by examining the relationship between the predicted and ex-
perimentally determined indexed retention times (iRT). This
evaluation includes the calculation of the correlation coef-
ficient (R²) from linear regression and the median absolute
error (MAE).

Method
Processing of external DDA/DIA MS data
In the evaluation of DPHO’s architecture, various datasets
were utilized. Mouse brain DDA data, sourced from the
PRIDE repository under the ID PXD006637, was applied in
its original MaxQuant format for initial model assessment.
Yeast R2P2 DDA data, also from PRIDE (ID PXD013453),
underwent MaxQuant analysis using the Uniprot refer-
ence proteome for S. cerevisiae. The specific version of
MaxQuant employed was v1.6.14.0, with parameters set to
identify particular peptide modifications and an FDR thresh-
old of 0.01 at both the PSM and protein levels[31].

The same yeast dataset was instrumental in refining
the iRT prediction aspect of the model. Additionally, mouse
brain DDA data was revisited for pre-training, comple-
mented by Vero E6 DIA, yeast DIA (both retrieved from
PRIDE, IDs PXD019113 and PXD013453, respectively),
and human phosphopeptide RT datasets. The latter excluded
phosphopeptides with low Ascore values from a previously



published study[32].
For DIA library construction, the Pulsar search en-

gine within Spectronaut was utilized, referencing Uniprot
proteomes for C. sabaeus and S. cerevisiae, aligning with
dataset-specific proteomes. The methodology for creating
these libraries is detailed under the section titled ”Spectral
Library Generation.” Further validation of the model’s pre-
diction capabilities for phosphopeptides involved analyzing
RPE1 DDA and DIA data (PRIDE ID PXD014525) and
U2OS DIA data (PRIDE ID PXD017476). Modifications
unsupported by DPHO were excluded, and searches were
conducted to generate direct DIA libraries using the Uniport
human reference proteome[33].

Reference spectra for phosphopeptides were gleaned
from two DDA-based human studies (PRIDE IDs
PXD017476 and PXD009227), and the model’s predictive
accuracy was assessed using these alongside RPE1 and
U2OS datasets, in addition to a human/yeast two-proteome
model (PRIDE ID PXD014525). The construction of direct
DIA libraries followed the established protocol, including
additional generation from the human/yeast dataset.

For inclusion in the model training and evaluation,
phosphopeptides from these external datasets were required
to have a localization score above 0.75, ensuring high-
confidence site assignment[34].

model structure
DPHO stands out as a pioneering deep learning frame-

work, uniquely designed for the intricate task of phospho-
peptide prediction. Its core strength lies in its ability to pro-
gressively learn a rich and detailed representation of pep-
tides, capturing both local and global structural nuances es-
sential for precise predictions.

At the heart of DPHO is an innovative hybrid network
architecture, distinct from traditional methods. This archi-
tecture synergistically integrates two distinct types of net-
work structures to comprehensively encode various facets
of peptide structure. The framework is composed of three
principal sub-networks:

Recurrent Network (Bi-LSTM): This network forms the
foundation of peptide encoding. Upon receiving the in-
put peptide sequence, optionally alongside its charge state,
the Bi-LSTM network initiates the process by generating
a preliminary representation of each amino acid in the se-
quence. Through its dual-layer bidirectional LSTM units,
each amino acid is embedded into a vector representation,
enabling a context-sensitive portrayal enriched by the char-
acteristics of neighboring amino acids. However, it’s note-
worthy that the context captured by the Bi-LSTM network
can sometimes be constrained due to information loss in re-
current updates:{

LSTM(xt, ht−1) (forward pass)
LSTM(xt, ht+1) (backward pass)

(1)

Here, ht represents the hidden state at time step t, xt is the
input at time step t, and LSTM denotes the LSTM function.
The forward pass and backward pass capture the contextual
information from both directions along the sequence[35].

Transformer Network: To overcome the limitations of
the Bi-LSTM and capture long-range dependencies within
peptide sequences, DPHO incorporates a Transformer net-
work. This network refines the peptide representation
formulated by the Bi-LSTM. Utilizing multi-head self-
attention mechanisms, the Transformer network simultane-
ously updates all amino acid features, allowing the model to
focus on multiple disparate peptide sites. This refined repre-
sentation is then poised for further processing:

Attention(Q,K, V ) = softmax
(
QKT

√
dk

)
Vrc (2)

Where Q, K and V are queries,keys and values matri-
ces,respective,and dk is the dimension of the vectors. The
softmax function is applied to the rows of the matrix
QKT /

√
dk,and this result is multiolied by V to get the fi-

nal output.

Linear Regressor Network: As the final stage, the trans-
formed peptide representation is fed into this network,
tasked with predicting either fragment ion intensities or in-
dexed retention times (iRT):

y = Wx+ b (3)

Metrics: In evaluating the accuracy of fragment ion
intensity predictions, our approach involves calculating
the Pearson correlation coefficient (PCC) for each pep-
tide,comparing our predictions to the actual observed values.
We then use the median value of these PCCs as the primary
metric for assessment. Additionally, aligning with the meth-
ods used in Prosit11, we employ the normalized spectral an-
gle (SA) as a secondary metric. For this, we again report the
median value of the SAs calculated. The normalized spectral
angle is defined in a specific manner for this purpose.

SA(y, y′) = 1− 2 ·
(
cos−1(y′ · y)

π

)
(4)

For the definition of the normalized spectral angle, it
involves comparing two vectors, each normalized to have an
L2 norm of 1. The model selection is primarily based on the
median Pearson correlation coefficient (PCC) metric derived
from this comparison. Regarding the prediction of indexed
retention time (iRT), we utilize the ∆t95% metric as the prin-
cipal measure. This metric is defined as the smallest time
interval that encompasses the discrepancies between the ob-
served and predicted retention times (RTs) for 95% of the
analyzed peptides.

∆t95% = 2 · |z − z′|95% (5)
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