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Abstract

This paper addresses the issues of excessive HBM usage and
low computational efficiency during the RLHF (Reinforce-
ment Learning from Human Feedback) process of existing
large models. It explores how the integration of Parameter-
Efficient Fine-Tuning (PEFT) and RLHF can find a balance
between resource efficiency and performance, thereby signif-
icantly reducing the resource consumption during the RLHF
process of existing large models. Initially, the paper discusses
the importance of fine-tuning smaller large models for spe-
cific applications, emphasizing the balance between perfor-
mance and resource efficiency. The paper then delves deeper
into the mechanisms of PEFT and RLHF, exploring how
these methods can be synergistically applied. Finally, it uses
the adaptation for Chinese semantic analysis tasks as a case
study. Extensive experiments were conducted, demonstrating
the effectiveness of this approach, showing that PEFT and
RLHF can be efficiently combined in specific downstream
tasks. Our research indicates that the strategic application
of PEFT and RLHF offers a feasible pathway to optimize
smaller large language models for specific downstream tasks,
achieving a balance between performance and computational
practicality.

1 Introduction

In the rapidly evolving field of artificial intelligence, large
language models (LLMs) have emerged as pivotal tools in
understanding and processing human language.The advent
of language models such as ChatGPT and GPT-4, which
exhibit human-like understanding and generation capabil-
ities across various domains, has highlighted the impor-
tance of instruction tuning in enabling these models to bet-
ter comprehend human instructions.Over the past few years,
there has been a significant increase in the size of pre-
trained language models (PLMs) such as GPT3(Brown et al.
2020),0PT(Zhang et al. 2022), BLOOM(Workshop et al.
2022), and PaLM(Chowdhery et al. 2023), which have bil-
lions of parameters. This increase in size has been accompa-
nied by a commensurate increase in the cost of training and
deploying large PLMs, with substantial financial and envi-
ronmental implications.

In the rapidly evolving landscape of artificial intelligence,
large language models (LLMs) such as GPT-4 have emerged
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as groundbreaking tools, demonstrating remarkable profi-
ciency in understanding and generating human language.
These models, built upon deep learning algorithms and
trained on extensive datasets, have shown great promise in a
range of applications, from composing text to providing so-
phisticated customer service solutions.(Brown et al. 2020)
However, the journey from a general-purpose LLM to a
model adept at handling specific downstream tasks is fraught
with challenges that are as diverse as they are complex.

From a technical perspective, Reinforcement Learning
from Human Feedback (RLHF) can significantly enhance
the capabilities of a model, but the RLHF process itself re-
quires a substantial amount of VRAM. This necessitates the
acquisition of professional-grade computing cards, which
can be costly. Additionally, the RLHF process is a delicate
task. It requires a deep understanding of the model’s learning
mechanics, as improper fine-tuning can lead to model degra-
dation rather than improvement. Ensuring that the model
achieves high accuracy in specific, often nuanced tasks is a
challenge. This is complicated by the need to ensure that the
model operates ethically, without bias, and in compliance
with existing regulations—requirements that are crucial in
sensitive domains such as healthcare or finance. Such pro-
cesses are often realized through RLHF.

Parameter-Efficient Fine-Tuning (PEFT) is designed to
facilitate the efficient adaptation of large pre-trained mod-
els for various downstream applications without the need
to fine-tune all parameters. The PEFT approach selectively
fine-tunes a small number of model parameters while freez-
ing most of the pre-trained LLM’s parameters, thereby
significantly reducing computational and storage costs.
Houlsby et al. (2019) proposed the fine-tuning method for
BERT, marking the beginning of research in fine-tuning.
This efficient method of PEFT makes fine-tuning on large
language models more feasible, aiding in quicker adaptation
to specific semantic analysis tasks. (Houlsby et al. 2019) first
proposed an efficient fine-tuning method for BERT marked
the beginning of research in efficient fine-tuning. The
Parameter-Efficient Fine-Tuning (PEFT) approach makes
the fine-tuning of large language models more feasible, aid-
ing in quicker adaptation to specific downstream tasks. Re-
inforcement Learning from Human Feedback(RLHF) ad-
dresses the challenge of limited labeled data by incorporat-
ing reinforcement learning techniques that leverage human-




generated feedback. Instead of relying solely on traditional
supervised fine-tuning, RLHF integrates a reward model de-
rived from human-provided feedback to guide the model’s
learning process. This approach is particularly advantageous
in scenarios where acquiring large-scale labeled datasets is
impractical or expensive. For instance, (Ouyang et al. 2022)
use RLHF to fine-tune GPT3(Brown et al. 2020).

This paper adopts a combination of PEFT and RLHF,
specifically through the combination of the PEFT module
with the base model, to create various models that signifi-
cantly reduce the VRAM usage during the RLHF process.
To validate the effectiveness of our approach, we conduct
the RLHF process on models for Chinese semantic analysis.
Due to complex syntax and rich morphology, Chinese lan-
guage processing presents unique challenges(Chen 2022).
These characteristics make semantic analysis of the Chi-
nese language a particularly complex task for language mod-
els(Shancheng, Yunyue, and Fuyu 2018).

We first introduce specific datasets related to Chinese se-
mantic analysis, such as tasks involving sentence seman-
tic analysis, sentence implication relationship analysis, and
news headline classification. Then, this section details how
PEFT is effectively used to perform RLHF on the model’s
parameter set, enhancing its ability to handle tasks related to
Chinese semantic analysis.

Additionally, we explore the role of RLHF in improv-
ing the model’s performance in Chinese semantic analy-
sis tasks. By integrating feedback from our specially con-
structed datasets, the reward model learns specific language
discrimination capabilities, thereby improving the trained
large model’s ability to accurately understand and interpret
Chinese text during the reinforcement learning process.

Furthermore, this section presents case studies and ex-
perimental results demonstrating the efficacy of combining
PEFT and RLHF in Chinese semantic analysis. These results
highlight significant improvements in tasks such as sentence
semantic analysis, analysis of implied relationships in sen-
tences, and news headline classification.

In summary, this paper employs a combination of PEFT
and RLHF, significantly reducing resource requirements,
and tests the approach on target tasks to seek practical ap-
plication in real-world scenarios.

2 Related Work
2.1 PEFT

The landscape of Parameter-Efficient Fine-Tuning (PEFT)
has been enriched by a multitude of innovative methodolo-
gies aimed at reducing the computational and memory bur-
dens associated with fine-tuning large pre-trained models.
This section encapsulates some seminal and recent works
that have significantly contributed to the domain.

LoRA LoRA(Hu et al. 2021) proposed a simple way to
perform low-rank fine-tuning. As the new model contains
the same size of parameters as the original model, it was
a challenge for the models to balance the efficiency with
model quality. To deal with this trouble, parameter update
for a weight matrix in LoRA is decomposed into a produc-
tion with two low-rank matrix.That is to say, for the model

weight W, it no longer carry out full-parameter fine-tuning
training, but add residual form to the weight, and complete
the optimization process by training 61W. LoRA approxi-
mate 6W with matrices W4 and Wp

W' =W +6W (1)
W =Wy -Wg 2
WA c Rinxr, WB c RT‘XOut (3)

All pre-trained parameters are frozen, and two sparse ma-
trices W4,Wp was introduced to be trained,gaussian ini-
tialization for W4 and zero initialization for WWpg.The scal-
ing factor is constant and typically equals % ,a serve as a
hyperparameter. They can be integrated into the original
weight matrix W by adding the projection of W4 and Wy
to W.The overall architecture of LoRA is shown in Figure

1.
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Figure 1: The overall architecture of LoRA.

RepAdapter (Luo et al. 2023) observe that most existing
Parameter-efficient transfer learning(PETL) methods can in-
evitably slow down model inference. For prompt-tuning
methods, the inserted tokens greatly increase the compu-
tation cost of vision models.In terms of visual adapters,
the modules they add also increase the network complexity.
So they proposed a parameter-efficient and computationally
friendly adapter for giant vision models, called RepAdapter.
Specifically, they prove that the adaption modules, even with
a complex structure, can be seamlessly integrated into most
giant vision models via structural re-parameterization. This
property makes RepAdapter zero-cost during inference. The
structure of RepAdapter is still different from existing vi-
sual adapters, as shown in Fig. 3. They found no perfor-
mance degradation in the vision model after removing the
non-linearity of the adapter.Specifically, the formulation of
f(X;0) for RepAdapter can be re-written as

F(X50) = X + ¢u(a(X)). )
RepAdapter adopts the dense-sparse connections, where ¢,,
is formulated as a group-wise transformation by

G (X) = [ X oWy, .. ,X;kwgk} Yb 5)

Here, X; € R™*% is the features splitted from X € R™*¢,

k is the number of groups.W; € R#X% is the projection
weight matrix and b € R is the bias term.
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Table 1: Capabilities and Data Introduction
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Figure 2: Illustration the structural re-prameterization of
RepAdapter.

SSF SSF(Lian et al. 2022) is an efficient parameter fine-
tuning method that fine-tunes a model by scaling and pan-
ning the depth features extracted from a pre-trained model,
thus achieving comparable performance to full fine-tuning
while requiring fewer tunable parameters. Scaling features
is a fundamental step in ensuring that variables share sim-
ilar scales, preventing one feature from dominating others
during the training process. A common scaling method is
Min-Max Scaling:
X - Xmin

Xmax - Xmin

This formula normalizes features to a range between 0 and
1, maintaining the relative relationships between data points.

Shifting features involves centering them around a common
point, often referred to as zero-centering or mean shifting:

X scaled —

Xeentered = X — 4

By subtracting the mean (1), this ensures that the data is cen-
tered around zero, offering advantages in terms of model in-
terpretability and convergence. Combining scaling and shift-
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Figure 3: SSF Working Principle

ing of features creates a robust preprocessing strategy, serv-
ing as a new baseline for efficient model tuning. Properly
scaled and centered features contribute to quicker conver-
gence during training and reduce sensitivity to hyperparam-
eter choices.

2.2 Dataset

analyObjective Dataset In the landscape of downstream
tasks for large language models, a collection of diverse
datasets is indispensable for benchmarking models’ seman-



Dataset Sentence(s) Label
EPRSTMT PHMELEE A S, T R R AN Positive
RSN AR, EFEKE Negative
TNEWS LB EHE B, X2 AERXATE, News
EW5|—TEY”
BT SR INMER B TR &1L Science
OCNLI ”sentencel”:”%J:,éii—ﬁ:l}—ﬁE"]ﬁﬁﬁ,??ﬂﬁﬁ%ﬁﬂ%i” Entailment
“sentence2”:” 5 FE/D—{HKAR”
”sentence1”: At A= L R Neutral
“sentence2”: it 2L A
BUSTM “sentencel”:” L% F 2| K2 NER” 1
“sentence2”:” YR A2 L % IS
“sentencel”:” RS UL ASRK 2 N 0
”sentence2”:” SR ML 2 RIERA”

Table 2: Expanded sample entries from each dataset

tic analysis capabilities. We incorporate four distinct Chi-
nese datasets to evaluate performance across various do-
mains: EPRSTMT, TNEWS, OCNLI, BUSTM.

EPRSTMT is structured for sentiment classification in
e-commerce product reviews. It measures whether user-
generated content reflects positive or negative sentiments.
Extracted from Toutiao’s news portal, TNEWS categorizes
short text news titles into 15 sections, ranging from tourism
to finance. As part of the Chinese Language Understand-
ing Evaluation benchmark, OCNLI is the first large-scale
dataset for native Chinese natural language inference. Stem-
ming from an Al assistant, BUSTM’s goal is to identify the
semantic congruence of dialogue text pairs, a key task in in-
tent recognition(Examples are shown in Table 1).

These datasets enable comprehensive assessments, help-
ing discern the proficiency of language models in intricate
semantic-related tasks.

2.3 Overview of RLHF

RM and PPO Reinforcement Learning From human
Feedback (RLHF)(Ouyang et al. 2022),including reinforce-
ment learning from human preferences, is a technique that
trains a Reward Model(RM) directly from human feed-
back and uses the model as a reward function to opti-
mize an agent’s policy using reinforcement learning through
an optimization algorithm like Proximal Policy Optimiza-
tion(PPO).RLHF can improve the robustness and explo-
ration of reinforcement-learning agents,especially when the
reward function is sparse or noisy.

The Reward Model(RM) is trained in advance to the pol-
icy being optimized to predict if a given output is good (high
reward) or bad(low reward).

Proximal Policy Optimization(PPO) is an algorithm in the
field of reinforcement learning that trains a computer agent’s
decision function to accomplish difficult tasks, which is an
architecture that improves our agent’s training stability by

avoiding too large policy updates. For two reasons:
1.Smaller policy updates during training are more likely
to converge to an optimal solution.

2.A too big step in a policy update can result in falling
“off the cliff” (getting a bad policy) and having a long time
or even no possibility to recover.

To do that, it use a ratio that will indicates the differ-
ence between current and old policy and clip this ratio to
a specific range [1 — €, 1 + €], meaning that it remove the
incentive for the current policy to go too far from the old
one (hence the proximal policy term).PPO was developed by
John Schulman in 2017(Schulman et al. 2017), and has be-
come the default reinforcement learning algorithm at Amer-
ican artificial intelligence company OpenAl.

Llama2 and InstructGPT Llama2(Touvron et al. 2023)
and InstructGPT(Ouyang et al. 2022) employ distinct
methodologies for reward model training, diverging in their
strategies to enhance model performance.Their process dia-
grams are illustrated in Fig. 4 and 5, respectively.

(Touvron et al. 2023) train two separate reward mod-
els(RM), one optimized for helpfulness (referred to as Help-
fulness RM) and another for safety (Safety RM). They
initialize their reward models from pretrained chat model
checkpoints, as it ensures that both models benefit from
knowledge acquired in pretraining. To train the reward
model, they convert their collected pairwise human prefer-
ence data into a binary ranking label format (i.e., chosen and
rejected) and enforce the chosen response to have a higher
score than its counterpart. They used a binary ranking loss:

‘Crcmking - — 108; (J (TQ <x7 yc) — T ($7 yT))) (6)

where ry (x,y) is the scalar score output for prompt x and
completion y with model weights 6. y. is the preferred re-
sponse that annotators choose and ;. is the rejected counter-
part.Built on top of this binary ranking loss, they further add



a margin component in the loss:

‘Cranking = — IOg (U (TG (Z‘, yc) —Te ('/Ea y?‘) —-—m (T)))
(7

where the margin m (r) is a discrete function of the prefer-
ence rating.

In contrast, Starting from the SFT model with the final
unembedding layer removed, (Ouyang et al. 2022) trained a
model to take in a prompt and response, and output a scalar
reward.Specifically, the loss function for the reward model
is:

loss (0) = — 1

2

®)

, where 7y (z,y) is the scalar output of the reward model
for prompt = and completion y with parametersf, y,, is the
preferred completion out of the pair of y,, and y;, and D
is the dataset of human comparisons.Finally, since the RM
loss is invariant to shifts in reward, we normalize the reward
model using a bias so that the labeler demonstrations achieve
a mean score of 0 before doing reinforcement learning(RL).
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Figure 4: Training of Llama 2-Chat

The substantial resource overhead associated with Re-
inforcement Learning from Human Feedback (RLHF) can
be mitigated by employing Parameter-Efficient Fine-Tuning
(PEFT). In the following sections, we will elaborate in detail
on this approach.

mE(zaym?ﬂ)ND [IOg (O (7“9 (CL’, yw) —Te (.1‘, yl)))}

A prompt and
several model
outputs are
sampled.

@ Explain the moon landing to
- a 6 year old

e Explain gravity @ Explain war...

People went
to the moon..

Moon is natural
satellite of..

N J
Y

A labeler ranks
the outputs from @ 0 > 0 > 0 = 0

best to worst.

This data is used Py
to train our RM .\.\;S.Qf/' Q’°’°=°

reward model.

Figure 5: Training of InstructGPT reward model

Reward Model 1
Reward
Reward Model 2
PPO
Reference Model
KL-div
Active Model

i

Figure 6: The schematic diagram of the models that need to
be stored in VRAM during the RLHF process in Llama2.

3 Methodology

In this section, we discuss how we reduce the resource over-
head of Reinforcement Learning from Human Feedback
(RLHF) using Parameter-Efficient Fine-Tuning (PEFT)3.1.
We will first introduce the PEFT method we employ, fol-
lowed by a description of the RLHF steps3.3, and how we
integrate both approaches.

3.1 PEFT Method

LoRA Given the empirical advantage of LoRA, note that
the low-rank structure not only lowers the hardware barrier
to entry which allows us to run multiple experiments in par-
allel, but also gives better interpretability of how the update
weights are correlated with the pre-trained weights.

In principle, we can apply LoRA to any subset of weight
matrices in a neural network to reduce the number of train-
able parameters. We limit our study to only adapting the at-
tention weights for downstream tasks and freeze the MLP
modules (so they are not trained in downstream tasks) both
for simplicity and parameter-efficiency.We determine which
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Figure 7: The schematic diagram of integrating PEFT within
the RLHF process.

layers need to be fine-tuned using LoRA and replace it with
the LoRA layer. The LoRA layer actually adds a bypass on
the basis of the original layer, simulates the update of the pa-
rameters through low-rank decomposition, freezes the orig-
inal parameters, and makes fine tuning to freeze the origi-
nal parameters and only update the parameters of the LoRA
layer.

SSF In our study, we have implemented the SSF (Scal-
ing and Shifting Features) method, an efficient parameter
fine-tuning approach introduced by Lian et al. in their pa-
per “’Scaling & Shifting Your Features: A New Baseline for
Efficient Model Tuning”(Lian et al. 2022). This method fine-
tunes a model by scaling and shifting the depth features ex-
tracted from a pre-trained model, thereby achieving perfor-
mance comparable to full fine-tuning with fewer tunable pa-
rameters.

RepAdapter Firstly, there are no activation functions
in RepAdapter, and this is a critical condition for re-
parameterization. Secondly, RepAdapter applies a dense-to-
sparse structure. Its sparse part is constructed by group-wise
transformation. Thirdly, RepAdapter adopts the pre-inserted
placement to maximize its benefit to vision models.

All existing adapters follow the non-linear structure to
adapt downstream tasks. However, (Luo et al. 2023) find no
performance degradation in the vision model after remov-
ing the non-linearity of the adapter. In this case, the effects
of non-linearity will become not obvious in vision models.
Meanwhile, removing non-linearity also offers the distinct
advantage of allowing the adapter to be re-parameterized af-
ter training.

In Eq. 4, ¢, and ¢4 are usually two fully connected
layers in existing adapters. In contrast, RepAdapter adopts
the dense-sparse connections. The sparse structure of
RepAdapter makes it more lightweight than conventional vi-
sual adapters(Chen et al. 2022). In practice, they also find
that this sparse structure can improve performance, which
prevents the model from overfitting on downstream tasks
with limited training samples.

Empirically, they find that deploying RepAdapter before
the neural modules can lead to better performance, which
is also feasible for reparameterization. Meanwhile, they also
observe that it is more beneficial to apply RepAdapter to
both MHA and FFN in ViT. Therefore, the deployment of

RepAdapter in Transformer can be formulated by
X| = MHA(f (LN (Xi-1)30) + Xier 9
X, = FFN (f (LN (X{);&))+X{ (10)

3.2 The Efficient Combination of PEFT and
RLHF

Efficient PEFT Method LoRA, SSF, and RepAdapter,
three Parameter-Efficient Fine-Tuning (PEFT) methods,
each have their unique characteristics. LoRA’s low-rank
structure reduces the required VRAM usage and acceler-
ates training speed. SSF applies scaling and shifting only
to each feature. RepAdapter, on the other hand, utilizes re-
parameterizable Adapters, allowing inference processes to
occur without additional computational overhead through
re-parameterization. As these PEFT methods involve fewer
trainable parameters, they enable us to reduce VRAM re-
quirements for gradients and optimizer variables in super-
vised fine-tuning, while still delivering good performance.
The accuracy of most of these methods is comparable to full-
model fine-tuning, and in some datasets and tasks, they even
surpass full-model tuning. This makes these PEFT methods
particularly useful in efficient supervised fine-tuning.

Combination of PEFT and RLHF On the other hand, the
re-parameterizable nature of these PEFT methods allows for
the transformation of PEFT parameters and the base model
into various models, and this transformation is reversible.
This is especially useful for our RLHF process, as it allows
for significant memory reduction through the combination
of the base model and PEFT modules.

3.3 Experimental Procedure

RM model training We employed the hh_rlhf_cn dataset
for pre-training the Linksoul-llama2-7b model, resulting in
the pre-trained reinforcement model, llama2_RM _base. Sub-
sequent steps involved processing the educhat dataset, an
open-question dataset comprising various high school exam-
ination questions. We specifically filtered out the multiple-
choice questions from this dataset. For the purpose of train-
ing the Reinforcement Model (RM), each multiple-choice
question was transformed into three different formats based
on the following structures: {“chosen”: correct option with
explanation, “reject”: correct option only}, {“chosen”: cor-
rect option with explanation, “reject”: incorrect option with
explanation}, and {“chosen”: correct option, “reject”: incor-
rect option with explanation}. The rationale behind this data
construction was to train the model not only to provide the
correct answer to open-ended questions but also to furnish
reliable explanations. Fine-tuning of the llama2 RM base
model was conducted using this dataset to derive the final
RM model, llama2_RM.

PPO training In Section 3.1, we employed three different
Parameter-Efficient Fine-Tuning (PEFT) methods for train-
ing on four objective datasets: EPRSTMT, TNEWS, OC-
NLI, and BUSTM. The detailed results of this training are
presented in Table 4.



RepAdapter_1gpu SSF_1gpu LoRA_1gpu Full-Parameter_4gpu

Trainable Parameter Quantity 14804736 22717376 5799936 6753220352
Trainable Parameter Ratio 0.2% 0.03% 0.08% 100%
Training Time 5h 3.5h 3.5h 10h

Table 3: A Comparison of PEFT and Full-Parameter methods in terms of the Number of Model Parameters and Training Time.

EPRSTMT TNEWS OCNLI BUSTM Average

LoRA 90.00% 52.77%  51.15%  68.22%  65.54%
SSF 90.49% 50.70%  49.40%  64.00%  63.65%
RepAdapter 89.51% 53.23% 50.44%  69.58%  65.69%
Full Fine-Tuning 90.00% 5240%  51.20%  72.60%  66.55%
base 88.36% 29.80% 44.37%  66.48%  57.25%

Table 4: Comparison of different methods on objective questions.

EPRSTMT TNEWS OCNLI BUSTM Average

linksoul_llama 88.36% 29.80% 44.37%  66.48%  57.25%
Llama_2_70B _chat 89.70% 45.00% 50.60% 63.00%  62.08%
linksoul _SFT 90.49 % 52.19% 51.11% 66.70%  65.12%
linksoul _RLHF 90.16% 5294% 51.94% 73.87% 67.23%
ChatGLM3-6B 71.80% 42.60% 38.20% 70.70%  55.83%

Baichuan2-7B-chat 81.20% 39.50% 51.20%  63.10%  58.75%

Table 5: Comparison of results between the optimal method and other existing models on different datasets.



4 Experiments

4.1 Experimental Setup

System Configuration The experiments were conducted
on a system equipped with eight NVIDIA GeForce RTX
3090 GPUs, ensuring high-performance computing capabil-
ities for model training and evaluation.

Model Input Handling To address the constraints of the
model architecture, a maximum token length of 2048 was set
for input sequences. In instances where input sequences ex-
ceeded this limit, a truncation process was applied to main-
tain compatibility with the model. The model’s generation
process was configured using the following parameters:

e Maximum New Tokens (max_new_tokens): The
value of nt determined the maximum number of tokens
generated for different datasets. For subjective question
datasets, nt was set to 128, while for objective ques-
tion datasets (EPRSTMT, TNEWS, OCNLI, BUSTM),
nt was set to 1.

¢ Number of Beams (num_beams): A value of 1 was cho-
sen to restrict the generation process to a single beam,
promoting deterministic output.

* Top-p (top_p): Set to 0.9, this parameter controlled the
nucleus sampling probability, allowing for a diverse yet
constrained generation.

* Temperature (temperature): A low value of 0.1 was
chosen to focus the generation process, reducing random-
ness and enhancing output coherence.

These parameter configurations aimed to strike a balance
between model expressiveness and computational efficiency,
facilitating meaningful experiments within the specified to-
ken constraints. The adaptability of this approach to differ-
ent question types was emphasized by the specific nt values
assigned to each dataset, laying the groundwork for subse-
quent analyses in the following sections.

4.2 Ablation Study

Resource Consumption Comparison Experiment We
conduct an ablation study in order to explore the re-
source consumption of PEFT and Full-Parameter meth-
ods.As shown in Table 2, it can be found that compared with
full-parameter fine-tuning, the number of training parame-
ters of PEFT is greatly reduced, and using full-parameter
tuning requires about 2-3 times the training time cost,
demonstrating that PEFT methods reduce resource over-
head.

PEFT performs better on objective questions As shown
in Table 3,it can be found that PEFT performs better on ob-
jective questions.

Comparison of different methods on different datasets
In Table. 4, we further compare the model fine-tuned using
the PEFT method with other existing models, of which re-
sults reveal that the fine-tuned model achieves superior per-
formance.

4.3 Results

As shown in the Table 5, we tested the performance of
the model on objective questions using different fine-tuning
methods across datasets such as EPRSTMT, TNEWS, OC-
NLI, and BUSTM. The ’final model’ refers to the model that
has undergone RLHF (Reinforcement Learning from Hu-
man Feedback) technology. It can be observed that mod-
els fine-tuned using LoRA and RepAdapter methods can
maintain the efficiency of model fine-tuning while achieving
accuracy close to full fine-tuning. Furthermore, the perfor-
mance of the model improves further after applying RLHF.
The llama2_RepAdapter model, which achieved the high-
est average precision, was chosen as the base model. The
llama2_rm was utilized as the Reinforcement Model (RM).
Training was then conducted on the hh_rlhf_cn test dataset
using Proximal Policy Optimization (PPO), culminating in
the final model, llama2_RLHF. For subjective questions, we
conducted separate tests on models before and after us-
ing parameter-efficient fine-tuning (PEFT) and reinforce-
ment learning from human feedback. From Table 6, it can
be observed that models using PEFT methods can provide
answers to long textual content. In contrast, models using
RLHF can further articulate the reasoning behind the an-
swers, enhancing interpretability.

5 Conclusion

Our method, integrating Parameter-Efficient Fine-Tuning
(PEFT) with Reinforcement Learning from Human Feed-
back (RLHF), has demonstrated remarkable efficiency
within the RLHF framework. Furthermore, it achieved im-
pressive outcomes on the datasets we utilized. In the RLHF
phase, our approach not only met but also exceeded our ex-
pectations, providing answers and rational explanations for
the targeted questions, thereby successfully fulfilling the ob-
jectives of our experiment.
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Table 6: Comparison of responses of SFT model and RLHF model



References

Brown, T.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan, J. D.;
Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry, G.; Askell,
A.; et al. 2020. Language models are few-shot learners. Ad-
vances in neural information processing systems, 33: 1877—
1901.

Chen, S.; Ge, C.; Tong, Z.; Wang, J.; Song, Y.; Wang, J.; and
Luo, P. 2022. Adaptformer: Adapting vision transformers
for scalable visual recognition. Advances in Neural Infor-
mation Processing Systems, 35: 16664—16678.

Chen, Z. 2022. Research on Intelligent Semantic Recogni-
tion and Self-Organizing Feature Mapping of Chinese Lin-
guistics Under Big Data Informationization. In 2022 4th
International Conference on Smart Systems and Inventive
Technology (ICSSIT), 1123-1126.

Chowdhery, A.; Narang, S.; Devlin, J.; Bosma, M.; Mishra,
G.; Roberts, A.; Barham, P.; Chung, H. W.; Sutton, C.;
Gehrmann, S.; et al. 2023. Palm: Scaling language model-
ing with pathways. Journal of Machine Learning Research,
24(240): 1-113.

Houlsby, N.; Giurgiu, A.; Jastrzebski, S.; Morrone, B.;
De Laroussilhe, Q.; Gesmundo, A.; Attariyan, M.; and
Gelly, S. 2019. Parameter-efficient transfer learning for
NLP. In International Conference on Machine Learning,
2790-2799. PMLR.

Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.

Lian, D.; Zhou, D.; Feng, J.; and Wang, X. 2022. Scaling &
Shifting Your Features: A New Baseline for Efficient Model
Tuning. In Advances in Neural Information Processing Sys-
tems (NeurlPS).

Luo, G.; Huang, M.; Zhou, Y.; Sun, X.; Jiang, G.; Wang,
Z.; and Ji, R. 2023. Towards Efficient Visual Adap-
tion via Structural Re-parameterization. arXiv preprint
arXiv:2302.08106.

Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.;
et al. 2022. Training language models to follow instructions
with human feedback. Advances in Neural Information Pro-
cessing Systems, 35: 27730-27744.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Shancheng, T.; Yunyue, B.; and Fuyu, M. 2018. A Semantic
Text Similarity Model for Double Short Chinese Sequences.
In 2018 International Conference on Intelligent Transporta-
tion, Big Data Smart City (ICITBS), 736-739.

Touvron, H.; Martin, L.; Stone, K.; Albert, P.; Almahairi, A.;
Babaei, Y.; Bashlykov, N.; Batra, S.; Bhargava, P.; Bhosale,
S.; et al. 2023. Llama 2: Open foundation and fine-tuned
chat models. arXiv preprint arXiv:2307.09288.

Workshop, B.; Scao, T. L.; Fan, A.; Akiki, C.; Pavlick, E.;
1li¢, S.; Hesslow, D.; Castagné, R.; Luccioni, A. S.; Yvon,
F.; et al. 2022. Bloom: A 176b-parameter open-access mul-
tilingual language model. arXiv preprint arXiv:2211.05100.

Zhang, S.; Roller, S.; Goyal, N.; Artetxe, M.; Chen, M.;
Chen, S.; Dewan, C.; Diab, M.; Li, X.; Lin, X. V.; et al. 2022.
Opt: Open pre-trained transformer language models. arXiv
preprint arXiv:2205.01068.



