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Abstract

The majority of currently available face forgery detectors pri-
marily focus on specific forging patterns, such as noise char-
acteristics, local texture, or frequency clues. This limitation
hinders their ability to detect forgeries with unknown patterns
and adapt the learned representations to novel forgery tech-
niques which are not presented in the training data. In this
paper, we develop a forgery detection framework based on
reconstruction classification learning to overcome these chal-
lenges. Reconstruction learning over real images enhances
the learned representations to detect forgery patterns that are
even unknown, while classification learning mines the impor-
tant differences between real and fake images. In order to get
a better representation, instead of relying solely on the en-
coder in the reconstruction learning process, we introduce bi-
partite graphs that incorporate both encoder and decoder fea-
tures in a multi-scale manner. Through enhancing the entire
learning process for categorization and reconstruction, our
aim is to improve the overall performance of face forgery de-
tection. To validate our approach, we will conduct extensive
experiments on substantial benchmark datasets and compare
our results to current state-of-the-art methods.

Introduction
Face forgery-generating techniques have made significant
strides in recent years (Bitouk et al. 2008). The breakthrough
of deep learning has made it incredibly simple to create
fake facial photos or videos that look incredibly real. These
methods can be used by an attacker to spread false informa-
tion, malign public figures, or compromise authentication,
resulting in major political, social, and security repercus-
sions (Lyu 2020). It is critical to develop reliable detection
techniques in order to reduce malicious use of face forgery.

The conventional approach to training convolutional neu-
ral networks (CNN) for image classification, as commonly
employed in early face forgery detection methodologies
(Nguyen et al. 2019), typically involves taking a facial im-
age as input and classifying it as either real or fake using
pre-built CNN backbones. However, these straightforward
CNN models often exhibit limitations in their ability to de-
tect forgeries across a broad spectrum of facial variations.
This limitation is evident in their tendency to focus on a nar-

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

row subset of faces, underscoring a lack of comprehensive
understanding in forgery detection (Wang and Deng 2021).

Recent advancements in forgery detection have sought to
address these limitations by leveraging specialized forgery
patterns. These patterns include considerations of noise
characteristics (Gu et al. 2022), local textures (Chen et al.
2021), and frequency information (Li et al. 2020a). By in-
corporating these nuanced features, these studies aim to en-
hance the identification of forgery artifacts present in ma-
nipulated facial images. However, a notable drawback is that
these approaches heavily rely on learned patterns associated
with specific manipulation techniques during training.

While these specialized approaches have demonstrated
positive outcomes, their effectiveness is contingent upon en-
countering forgery patterns within the known repertoire of
manipulation techniques. The real-world scenario poses a
challenge, as forgeries employing previously unseen pat-
terns or emerging manipulation techniques can easily ren-
der existing detection methods ineffective. This vulnerabil-
ity arises due to the inability of these models to adapt to new
patterns and perturbations introduced by evolving manipula-
tion techniques, underscoring the need for more robust and
adaptive face forgery detection strategies in practical appli-
cations.

Our main objective is to improve the learned representa-
tions for face forgery detection by addressing the aforemen-
tioned issues. We have two key considerations to achieve
this goal. Firstly, instead of overfitting to specific forgery
patterns in the training set, we aim to study the universal
traits of real faces to develop representations that can gen-
eralize to new forgery patterns. We hypothesize that com-
pact representations derived from the compact distribution
of real samples are better equipped to distinguish unknown
fake patterns from real faces. Secondly, we strive to enhance
the network’s ability to reason about forgery signals, ensur-
ing that the learned representations capture the crucial differ-
ences between real and fake images. Categorization learn-
ing, which offers a comprehensive understanding of forg-
eries, plays a vital role in this process. Moreover, we pro-
pose the incorporation of a reconstruction network compris-
ing both an encoder and a decoder. This novel architecture
is designed to effectively capture the intricate distribution of
real faces.

In addition to the conventional reconstruction loss em-



ployed in typical autoencoder frameworks, we introduce a
metric-learning loss applied to the decoder. This additional
loss function is strategically incorporated to induce a de-
liberate discrepancy within the embedding space. By doing
so, we aim to create a distinct separation between the em-
beddings of real and fake images. The metric-learning loss
serves as a guidance mechanism, steering the decoder to-
wards a configuration that not only accurately reconstructs
real faces but also exhibits a notable divergence when pre-
sented with fake images.

This dual-loss strategy, combining reconstruction loss and
metric-learning loss, is intended to enhance the discrimina-
tive capabilities of the model. By training the network to not
only faithfully reconstruct real faces but also to create a dis-
cernible gap in the embedding space, we anticipate a higher
efficacy in identifying fake images, particularly those bear-
ing unknown forgery patterns. This approach acknowledges
the challenge posed by emerging manipulation techniques
and variations in forgery patterns, aiming to equip the model
with a more robust and adaptive mechanism for distinguish-
ing between genuine and manipulated facial images.

To further enhance the learned representations, we will
incorporate both the encoder output and decoder features,
and utilize bipartite graphs that reason about forgery cues
detected by the decoder features. Recent advancements in
graph modeling allow for flexible and adaptive modeling of
feature relationships, which is crucial for effective forgery
detection (Zhao et al. 2021a). We will employ a multi-scale
mechanism during the reasoning process to thoroughly ex-
plore forgery clues, considering that different face forgery
techniques leave traces at varying scales. Guided by the re-
construction difference, we focus on the graph output, which
serves as the final representation for classification learning,
as it indicates potentially forged regions. The optimization
process is performed end-to-end to jointly improve classifi-
cation learning and reconstruction.

In summary, our research aims to achieve the following:
• Develop representations that can generalize to new

forgery patterns by studying the common features of real
face images.

• Enhance the network’s ability to reason about forgery
signals and capture the crucial differences between real
and fake images.

• Combining reconstruction and classification learning,
with the incorporation of bipartite graphs and a multi-
scale mechanism to improve forgery detection perfor-
mance.

• Conduct extensive experiments to validate the effective-
ness of our proposed method.

Related work
Face Forgery Detection. Nowadays, many studies are pro-
posed to boost the performance of face forgery detection(Li
et al. 2020b; Gu et al. 2021; Wang and Deng 2021; Sun
et al. 2022). Most early works (Lin et al. 2020; Nguyen
et al. 2019; Rossler et al. 2019) model face forgery detec-
tion as a vanilla binary (real or forgery) classification prob-
lem and use neural networks to extract global features of

cropped face images. However, these methods focus more
on category-level differences than the subtle differences be-
tween real and fake images. Recently, there are many works
proposing to focus on the manipulated features such as fre-
quency clues, noise patterns and local textures. (Qian et al.
2020) and (Li et al. 2021) mine the frequency differences
and design frequency-aware models to detect forged faces.
(Zhou et al. 2017) present a two-stream deep network to de-
tect fake faces by focusing on visual appearance and local
noise in two branches, respectively. (Zhao et al. 2021a) pro-
pose a multi-attentional face forgery detector network that
aggregates the low-level textural feature and high-level se-
mantic features to discriminate real and fake samples. Al-
though these works achieve considerable performances, they
tend to overfit the training data and may experience signifi-
cant performance drops on unseen forged samples.

Reconstruction Learning. Reconstruction learning has
been wildly employed in unsupervised learning settings
(Han et al. 2019; Liu et al. 2022; Wertheimer, Tang, and
Hariharan 2021). The goal of it is to learn a representation
of the input data that can accurately reconstruct the original
data when fed in the model. Reconstruction learning for face
forgery detection has been explored in some earlier works.
(Nguyen, Yamagishi, and Echizen 2019) adopt a reconstruc-
tion network and multi-task learning for forged face detec-
tion. (Du et al. 2020) use a locality-aware autoencoder to im-
prove the generalization capacity of the model and employ
a pixel-wise mask to learn intrinsic representation from the
forgery region. However, these methods perform reconstruc-
tion learning over both real and fake samples. The general-
ization of the learned representations is not guaranteed. In
this paper, we propose to only perform reconstruction learn-
ing over real facial images to learn their common character-
istics, which makes it easier for the learned representations
to spot unknown forgery patterns because of the distribu-
tional discrepancy between real and fake images.

Proposed Solution
To effectively capture the fundamental differences between
real and fake faces, we propose a novel framework called
RCL. This framework encompasses three key components:
reconstruction learning, multi-scale graph aggregation, and
reconstruction guided attention, as depicted in Figure 1. The
reconstruction network focuses on modeling the distribu-
tions of real face images, enabling the detection of unknown
forgery patterns. Additionally, the multi-scale graph aggre-
gation scheme aggregates the captured discrepancy infor-
mation from both the encoder and decoders of the recon-
struction network, allowing for comprehensive analysis of
the differences between real and fake faces across multi-
ple scales. Furthermore, the reconstruction guided attention
module directs the classification network to prioritize atten-
tion towards forgery traces. The subsequent sections provide
a detailed presentation of these three components.

Reconstruction Learning. To explore the shared char-
acteristics of authentic faces more appropriately, we pro-
pose employing reconstruction learning to solely restore
genuine facial images. Specifically, given an input image
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Figure 1: Schematic diagram of the proposed framework named RCL, which consists of three main schemes, i.e., reconstruction
learning, multi-scale graph aggregation, and reconstruction guided attention. Our proposed method comprises an encoder-
decoder network for learning image representations from both real and fake faces. The encoder output undergoes multi-scale
graph aggregation to refine these representations, guided by reconstruction difference for final classification. We jointly train
our system by minimizing the classification loss Lcls, the reconstruction loss Lr (computed exclusively on real faces), and the
metric-learning loss Lm.

X ∈ R(h×w×3) ,we train a reconstruction network F us-
ing an encoder-decoder architecture. We incorporate some
white noise into the input samples during the training pro-
cess to obtain x̃, aiming to acquire robust representations
of real faces. Consequently, the image reconstruction proce-
dure can be described as follows:

x̂ = F(x̃) (1)

During the reconstruction process, we calculate the recon-
struction loss Lr between the input real images and their re-
constructed versions in a mini-batch as follows:

Lr =
1

|R|
∑
i∈R

∥X̂i −Xi∥1 (2)

where R denotes the set of real samples in a mini-batch
and |R| is the cardinality of R.

We employ a metric-learning loss to encourage proxim-
ity among real images and distance between real and fake
images in the embedding space. For simplicity, let F ∈
R(h′×w′×3) represent the output features of an encoder or
decoder block. By performing global average pooling on F,
we obtain the feature vector F ∈ Rc

for each input sample.
The metric-learning loss is calculated as follows:

Lm =
1

NRR

∑
i∈R,j∈R

d(F i, F j)−
1

NRF

∑
i∈R,j∈R

d(F i, F j) (3)

where R, F denote the set of real and fake samples. NRR
and NRF are the total number of (real, real) pairs and
(real,fake) pairs, respectively. d(·, ·) is a pair-wise distant
function based on the cosine distance:

d(a, b) =
1− a

∥a∥2
· b
∥b∥2

2
(4)

The first part of Lm encourages the learning of compact
representations from genuine faces, while the second part
highlights the distinctions between real and fake samples.
Unlike conventional metric-learning losses applied directly
to feature extractors, our proposed loss is tailored to amplify
reconstruction differences, thereby facilitating reconstruc-
tion learning. Furthermore, we do not impose compactness
constraints on fake data, considering their significant feature
variations across different forgery techniques. We apply the
metric-learning loss to the output of the last encoder block
and each decoder block.

Multi-scale Graph Aggregation.To leverage the valu-
able information within the decoder for distinguishing be-
tween real and fake images, we introduce the metric-
learning loss. However, to enhance the classification of real
and fake images based on the information embedded in the
decoder, we propose a multi-scale graph aggregation (MGA)
module. This module combines the features from the de-
coder blocks and the encoder output into a bipartite graph,
allowing comprehensive reasoning about forgery cues.

In the MGA module, we focus on the feature maps of a
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Figure 2: Illustration of the proposed multi-scale graph ag-
gregation scheme to aggregate information in the encoder
output (orange) and decoder features for a given scale (blue)
to produce richer representations (green).

decoder block at a specific scale. As illustrated in Figure
2, we model both the encoder output and the decoder fea-
tures. We represent Fenc and Fdec, as two sets of vertices
Venc = {vienc}h1×w1

i=1 , Vdec = videc
h2×w2

i=1 , where each ver-
tex corresponds to an embedding vector of the original fea-
ture maps. For each vienc, we define N

(
vienc

)
= {vi,jdec}Nj=1

as the set of vertices in Vdec that are linked to it. N represents
the number of vertices in the set. To improve the reasoning
about forgery clues, the graph aggregation process aggre-
gates the information from N

(
vienc

)
to enrich the feature

representations of vienc. We keep the spatial correspondence
when aggregating the information from the decoder to the
encoder to model the local relationship since forgery traces
usually reside in continuous local areas.

To determine their importance, we project vienc and vi,jdec
to a shared embedding space using two neural networks,
g1(·) and g2(·), resulting in ṽienc, ṽ

i,j
dec, respectively. We

compute a weight coefficient aj to indicate the relevance of
vienc and vi,jdec. Particularly, we first concatenate the vertices
from the two sub-graphs, and then passing through a single-
layer network ϕ to get aj as:

aj =
exp(ϕ(ṽienc∥ṽ

i,j
dec))∑

vi,l
dec∈N (vi

enc)
exp(ϕ(ṽienc∥ṽ

i,j
dec))

(5)

where ∥ denotes the concatenation operation. We then
compute a ∈ [0, 1] valued vector based on vienc. During in-
formation aggregation, we particularly enhance the channels
of vi,jdec. when the weight of the corresponding channels of
ṽienc is small. The aggregated feature vector viagg is com-
puted by:

viagg =

N∑
j=1

aj ṽ
i,j
dec ⊗

[
1−

(
vienc

)]
(6)

We propose a multi-scale approach to extract comprehen-
sive forgery information by mining traces resulting from dif-
ferent manipulation techniques. Specifically, we aggregate
the output features of the encoder with each block output of

the decoder in a multi-scale manner. Using a sigmoid func-
tion and two fully-connected layers, we concatenate the ag-
gregated features viagg in different scales with vienc to pro-
duce an enhanced feature vector vienh with the same channel
dimension as vienc. Finally, we spatially assemble the en-
hanced feature vectors vienh to obtain the enhanced feature
maps Fenh for reconstruction-guided attention.

Reconstruction Guided Attention.With the constraints
of the reconstruction network, the visually distinct recon-
structed forged faces compared to the input forged faces
prompt us to utilize the reconstruction difference to high-
light potential manipulated traces. Therefore, to indicate the
probably manipulated traces, we propose the reconstruction
guided attention module to guides the classification network
to prioritize forgery traces. Given the reconstructed image X̂
nd the original image X , we first compute their difference in
pixel level to get the difference mask m as:

m =
∣∣∣X̂ −X

∣∣∣ (7)

Given Fenh the enhanced feature maps, we compute the
attention map based on the difference mask and apply it to
Fenh spatially to get F ′enh. Then, we add F ′enh and Fenh

to obtain the attended output features:

F ′
enh = σ(f1(m))⊗ f2(Fenh) (8)

Fatt = F ′
enh + Fenh (9)

where f1, f2 represent the convolutional operations, σ is
the sigmoid function, and ⊗ denotes the element-wise mul-
tiplication. To maintain simplicity, we exclude the spatial
size of these tensors and employ bilinear interpolation to
ensure proper spatial sizing for the mentioned operations.
Loss Function.The total loss function L of the proposed
framework includes the reconstruction loss and the metric-
learning loss for reconstruction learning, together with the
cross-entropy loss Lcls for binary classification:

L = Lcls + λ1Lr + λ2Lm (10)

Experiments
Experimental Setup
Datasets. To assess the effectiveness of our proposed
method and compare it with existing approaches, we con-
ducted comprehensive evaluations on the widely utilized
FaceForensics++ (FF++) dataset (Rossler et al. 2019). This
dataset has gained prominence for its diversity and realism,
comprising four distinct manipulation techniques: Deep-
fakes (DF), Face2Face (F2F), FaceSwap (FS), and Neu-
ralTextures (NT). Each technique introduces unique chal-
lenges, reflecting the evolving landscape of facial manipu-
lation methods.

The FF++ dataset is meticulously curated, drawing from
various sources to ensure a representative and varied collec-
tion of manipulated facial data. This diversity is crucial for
evaluating the robustness of forgery detection methods, as it
exposes models to a broad spectrum of facial manipulations
encountered in real-world scenarios.



Figure 3: Reconstruction visualization of the proposed method on the FaceForensics++ dataset The first row displays the input
images. The second row and the third row show reconstruction results and pixel-level differences, respectively.

Evaluation Metrics. To evaluate our method, we report
the most commonly used metrics in related studies(Afchar
et al. 2018; Chen et al. 2021; Rossler et al. 2019), includ-
ing Accuracy (Acc) and Area Under the Receiver Operating
Characteristic Curve (AUC).

Implementation Details. The proposed framework is im-
plemented based on the Xception(Chollet 2017) architec-
ture. We train it with a batch size of 32, using the Adam
optimizer with an initial learning rate of 2e-4 and a weight
decay of 1e-5. A step learning rate scheduler is employed to
adjust the learning rate. λ1 and λ2 in Equation 10 are empir-
ically set to 0.1. For data augmentation, we only use random
horizontal flipping.

Experimental Results
Intra-testing. We compare our proposed method with other
methods. As shown in Table 1, for FF++ dataset, our pro-
posed method outperforms other approaches.

Table 1: Intra-testing comparisons.

Methods Acc(%) AUC(%)
Xception 86.86 89.30
Add-Net 87.50 91.01
MultiAtt 88.69 90.40

RCL(ours) 91.03 95.02

Cross-testing. To assess how well our method general-
izes to unfamiliar manipulations, we perform cross-dataset
experiments. This involves training our models on FF++
dataset and subsequently testing them on WildeDeepfaks
and Celeb-DF(Li et al. 2020b) datasets. By conducting these
experiments, we can evaluate the performance of our method
on detecting forgeries that are outside the training dataset.
The results are shown in Table 2. From the table, we can
know that our method generally outperforms all the listed
methods in terms of performance on unseen test data, often
with a significant margin.

Table 2: Cross-testing in terms of AUC (%) by training on
FF++ dataset

Methods WildeDeepfake(%) Celeb-DF(%)
AUC AUC

Xception 67.72 61.80
Add-Net 62.35 64.78
MultiAtt 59.74 68.01

RCL(ours) 64.31 69.06

Reconstruction visualization. In order to provide a clear
understanding of reconstruction learning, we have visual-
ized the results of the reconstruction network and compared
them with the original input in Figure 3. The visualization
allows us to observe that genuine faces can be reconstructed
effectively with minimal blurring, while the manipulated re-
gions in fake faces cannot be accurately restored. The differ-
ence masks further highlight the disparities between real and
manipulated faces, thereby revealing potential indications of
forged regions. It is important to note that our method is
solely trained using image-level supervision.

Conclusion
In this paper, we present a novel approach to detect facial
forgery, emphasizing the exploration of shared compact rep-
resentations of genuine facial features to discern the dispari-
ties between authentic and manipulated faces. Our inventive
multi-scale graph aggregation module seamlessly integrates
encoder output and decoder features into bipartite graphs
across multiple scales, facilitating a comprehensive anal-
ysis of forgery indicators. Concurrently, we introduce the
reconstruction-guided attention module to steer the model’s
focus towards potential forgery traces. Rigorous experi-
ments and intricate visualizations confirm the resilience and
applicability of our method across well-established bench-
mark datasets.
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