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Abstract

Industrial surface defect detection is a crucial component in
the industrial production process. It plays a positive role in
enhancing the quality of industrial products, reducing raw
material wastage, and improving production efficiency. With
the vigorous development of deep learning, deep learning-
based object detection algorithms have taken the lead in
industrial surface defect detection. Emerging deep learning
object detection technologies mainly fall into two main-
stream categories: single-stage and two-stage algorithms.
While two-stage object detection offers higher precision,
it requires longer inference times and may not meet the
real-time requirements of industrial production. As object
detection algorithms continue to evolve, current single-stage
object detection algorithms have surpassed two-stage algo-
rithms in both detection speed and accuracy. The outstanding
representative of single-stage object detection algorithms,
the YOLO series, has garnered significant attention and
widespread use in both the academic and industrial sectors.
Therefore, we will propose some improvements based on the
YOLOVS5 model for industrial defect detection:

1. Add an attention mechanism to the neck feature fusion net-
work of YOLOVSs. The output three-scale feature maps
then go through four plug-and-play attention mechanism
modules, namely SE, ECA, CBAM and CA, so that the
multi-scale feature maps are sent to the detection head after
being weighted by attention, which improves the model’s
accuracy. Characteristic perception

2. Replace the original CloU with a more appropriate EloU
as the Bounding Box loss.

Introduction

Vision-based industrial defect detection aims to identify vis-
ible defects in various industrial products, including textiles,
chips, pharmaceuticals, and construction materials(Zhang,
Ding, and Yan 2011). These defects, though often small, can
significantly impair the normal functionality of the products.
They can occur at any stage of the industrial product’s life-
cycleLee et al. (2019)

We can classify industrial defects into surface defects and
structural defects. Surface defects primarily occur at local-
ized positions on the product’s surface, often manifesting as
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texture variations, irregular regions, non-uniform patterns,
or incorrect patterns(Wei, Song, and Zhang 2020) For exam-
ple, surface cracks, color blocks, sparse weaving in fabrics,
and printing errors in brand text. These defects can be analo-
gized as outliers or cluster anomalies based on the pixel val-
ues’ difference from the surrounding background.(Li et al.
2018) Outlier-type defects typically have distinct differences
in pixel values compared to a normal image, while cluster
anomalies have pixel values within a similar range to the
surrounding normal areas, making them more challenging to
detect. Structural defects are mainly caused by overall struc-
tural errors in the product, including deformation, misalign-
ment, missing parts, and contamination. For example, bent
wires, edge defects in diodes, or components placed in the
wrong positions.

We primarily focus on research in industrial surface de-
fect detection, which has long been one of the most impor-
tant areas of study in the field of industrial vision. In re-
cent years, with the widespread adoption of deep learning in
computer vision tasks, deep learning-based methods for in-
dustrial defect detection have rapidly advanced and become
mainstream. The most common detection algorithm is based
on YOLO(Redmon et al. 2016)(Redmon and Farhadi 2018)
(Bochkovskiy, Wang, and Liao 2020).

Adding attention mechanisms on top of it can allow
the model to focus more on important features. For
YoLov5, commonly used attention mechanisms include:
SE (Squeeze-and-Excitation) attention module, ECA (Effi-
cient Channel Attention) attention module, CBAM (Con-
volutional Block Attention Module) attention module, and
CA (Channel Attention) attention module. These four types
of attention modules only require a small amount of addi-
tional computational resources while enhancing the model’s
feature learning capabilities and optimizing its performance.
They can be readily applied as needed.

Related Work

In the past, surface defect detection on steel relied heav-
ily on manual visual inspection, resulting in low detection
rates and an inability to meet production demands. With the
gradual maturation of computer vision and image process-
ing technologies, computer vision-based surface defect de-
tection techniques have gradually replaced manual inspec-
tion in industrial production. In recent years, breakthroughs



in deep learning and artificial intelligence technologies have
led to the emergence of various object detection algorithms,
providing more possibilities for industrial surface defect de-
tection.

Therefore, researching the integration of deep learning al-
gorithms with steel surface defects to meet real-time and
accuracy production needs is of significant importance for
accelerating the advancement of the steel industry and im-
proving our country’s industrial capabilities.

Currently, there are two main types of deep learning-based
object detection algorithms: two-stage and one-stage object
detection algorithms .

Two-stage object detection algorithms, as the name sug-
gests, break down the object detection task into two sub-
tasks. The first subtask involves generating candidate boxes
that ideally contain the target objects. The second subtask
entails using convolution to extract relevant features from
the candidate box regions, which are then fed into a classi-
fication network to predict the object’s category. These two
steps are combined to complete the object detection. Rep-
resentative networks in this category include Faster R-CNN
(Ren et al. 2015), R-FCN (Dai et al. 2016), and Mask R-
CNN (He et al. 2017). While two-stage object detection al-
gorithms often offer high precision, their inference process
involves complex computations across two stages, making
them unsuitable for real-time detection.

One-stage object detection algorithms treat the two subtasks
of two-stage algorithms as a single task and employ an end-
to-end structure. When an image is input, they directly pro-
duce the categories and positions of objects within the im-
age. Representative networks in this category include YOLO
and SSD (Liu et al. 2016).

In the subsequent development of models,introduced a
lightweight version of Faster R-CNN (Ren, Geng, and Li
2018) They replaced the convolution layers used for feature
extraction with depthwise separable convolutions, resulting
in a three to fourfold increase in network speed . Addition-
ally, they added center loss to the original loss function to
enhance the network’s ability to differentiate between dif-
ferent types of defects.

Wang (Wang et al. 2021) input images into an improved
ResNet50 model, which included deformable convolution
networks (DCN) and enhanced cropping for classifying
samples with and without defects. If the probability of hav-
ing a defect is less than 0.3, the algorithm directly outputs
defect-free samples. Otherwise, the samples are further in-
put into an improved Faster R-CNN, which includes spatial
pyramid pooling (SPP), enhanced feature pyramid network
(FPN), and matrix non-maximum suppression (NMS). The
final output is the location and classification of defects or
defect-free regions within the samples.

Kou et al. developed an end-to-end defect detection model
based on YOLO-V3(Kou et al. 2021) They used an anchor-
free feature selection mechanism to choose the ideal feature
scale for model training, replacing anchor-based structures
to reduce computation time. The model introduced specially
designed dense convolution blocks to extract rich feature in-
formation, effectively improving feature reuse, feature prop-
agation, and enhancing the network’s representational ca-

pacity.

While the above-mentioned methods have achieved good re-
sults in object detection, there is still room for improvement,
especially in the detection of small targets like industrial de-
fects under weak supervision conditions, which are essential
to meet practical needs(Zhang, Ding, and Yan 2011).

Proposed Solution

In our research, we chose YOLOVS as the base model for
industrial surface defect detection. YOLOVS, known for its
speed and accuracy in complex scenes, was customized
to meet industrial defect detection needs. We introduced
a fused attention mechanism to enhance focus on criti-
cal regions, aiming to boost defect detection performance.
YOLOVS was selected due to its excellent object detec-
tion performance and adaptability. Customized modifica-
tions were applied for alignment with our specific task re-
quirements.

The Network Architecture

YOLOVS5, a state-of-the-art object detection algorithm, com-
prises four key components: the input module, backbone
network, neck network, and detection head. Notable mod-
ules within YOLOVS include the Focus module, CBL con-
volution module, CSP module, and Concatenation module.
The Focus module is designed to enhance small object de-
tection, the CBL convolution module integrates Convolu-
tional, BatchNorm, and Leaky ReLU operations for feature
extraction, the CSP module aids in effective feature fusion,
and the Concatenation module facilitates seamless concate-
nation of feature maps. YOLOVS excels in real-time object
detection tasks, demonstrating impressive accuracy and effi-
ciency across diverse applications.
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Figure 1: In the network architecture of YOLOVS, the atten-
tion module can be inserted into the last layer of the back-
bone network or into the Neck network to enhance feature
fusion capability. In this paper, we choose to insert the atten-
tion module after the three-scale feature maps output by the
Neck network. After applying the attention mechanism, the
feature maps are then fed into the detection head

Adding Attention Mechanism

Considering the diverse and complex nature of industrial
surface defects, traditional detection methods may strug-
gle to capture crucial defect regions accurately. Attention



mechanisms enhance the model’s focus on vital areas dur-
ing learning, improving its perception of defect regions. Our
goal is to boost the model’s robustness in real industrial set-
tings, allowing more precise detection and localization of
surface defects. This provides a reliable solution for indus-
trial quality control under weak supervision. We believe in-
corporating attention mechanisms enhances industrial sur-
face defect detection algorithms.

1. Squeeze-and-Excitation Network (SENet), introduced by
Jie Hu et al., emphasizes channel relations in CNNs. Un-
like previous research focusing on spatial aspects, SENet
recalibrates channel features by explicitly modeling in-
terdependencies. Despite a slight increase in computa-
tional cost, SE blocks notably enhance the performance
of state-of-the-art neural networks.
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Figure 2: Squeeze and Excitation Network (SENet)

2. Efficient Channel Attention (ECA) Module, presented by
Qilong Wang et al. in 2020, enhances channel features
through weighted scaling in the feature map. Differing
from other attention modules, ECA uses equivalent class
convolution to abstract channel relationships, effectively
extracting feature importance within each channel. De-
spite a similar parameter count to the base model, this
method yields significant performance improvement.
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Figure 3: Efficient Channel Attention (ECA) Module

3. Convolutional Block Attention Module (CBAM) com-
bines Channel Attention Module (CAM) and Spatial At-
tention Module (SAM). Unlike SE and ECA modules,
which emphasize channel attention, CBAM uniquely in-
tegrates both channel and spatial attention mechanisms.
This enhances the model’s ability to learn discrimi-
native features for improved object categorization via
channel attention and to focus on different image posi-
tions through spatial attention. This synergistic approach
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Figure 4: Convolutional Block Attention Module

allows the network better control over feature impor-
tance and distinctiveness, facilitating more precise fea-
ture learning.

4. Coordinate Attention (CA) Module, proposed by Qibin
Hou et al. in 2021, tackles spatial neglect in channel
attention. CA integrates spatial data by breaking down
global channel attention pooling into width and height
dimensions, embedding position data into channels. This
dual-channel approach ensures the model considers both
feature importance and spatial relationships. These four
modules, while slightly increasing computation, boost
feature learning in the model, optimizing performance.
They efficiently enhance capabilities with minimal re-
source consumption, maintaining inference speed. In
YOLOVS, insert these modules after the Neck network’s
three-scale feature maps for improved feature fusion.

EIoU Loss Function

YOLOVS employs CloU (Complete Intersection over
Union) as the bounding box loss, incorporating an aspect ra-
tio factor to measure the aspect ratio comprehensively while
considering both area and distance. The specific calculation
formula is as follows:
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However, CIoUp,ss has two issues. First, when the aspect
ratio of the predicted box is the same as or proportional to
the true box, the penalty term related to v becomes ineffec-
tive. Second, according to the gradient formula for calculat-
ing aspect ratio, the length and width of the predicted box
are inversely proportional, making it impossible to simul-
taneously increase or decrease both. Therefore, we decided
to enhance it using the EIoU (Exponential Intersection over
Union) loss, which introduces the length and width informa-
tion of the target box and is calculated as follows:

EIOULOSS = LIOU + Ldis + Lasp (3)
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Modifying from CloU to EIoU aims to boost industrial sur-
face defect detection under weak supervision. EloU, with
an exponential term, heightens IoU calculations, enhancing
sensitivity to predicted vs. true box overlap. Due to sparse




annotations in defect detection, models face localization er-
rors. EloU, as the loss function, targets better accuracy and
robustness, especially under weak supervision. This adapta-
tion aims to increase adaptability in intricate industrial sce-
narios, ensuring a reliable surface defect detection solution.

Experiments
Dataset and Parameter Settings

The dataset utilized in this study is the NEU-DET dataset(as
shown in Figure 5), curated by Associate Professor Ke-Chen
Song from Northeastern University. The dataset comprises
six typical surface defects of steel, including rolled-in scale,
patches, crazing, pitted surface, inclusion, and scratches.
Each class consists of 300 images, resulting in a total of
1800 images. The pixel size of each image is 200x200, and
each image is associated with a corresponding label file con-
taining information about the defect’s position and size. The

rolled-in scale patches crazing

pitted surface inclusion scratches

Figure 5: The presentation of some aspects of the NEU
dataset reveals that there are significant visual differences
among intra-class defects. For example, scratches (last col-
umn) can be horizontal, vertical, or diagonal. Similarly,
inter-class defects share similarities, such as scale, crack,
and pitted surface. Additionally, the grayscale variations of
intra-class defect images are influenced by lighting and ma-
terial changes

experimental setup employs a batch size of 16 and image di-
mensions of 200x200. During actual training, the images are
dynamically resized to 224x224. This resizing is necessary
as the YOLOv5 model’s feature extraction backbone under-
goes five downsampling steps, requiring a 32x reduction.
Thus, the input images are automatically resized to multiples
of 32 for efficient model computation. The training consists
of 100 epochs with an initial learning rate of 0.01, utilizing
the Adam optimization method.

Model Performance Evaluation Metrics

This paper employs precision (P), recall (R), and mean aver-
age precision (mAP) as the evaluation metrics for assessing
the model’s performance. The specific calculation formulas
are as follows:

L TP )
precision = 7 PP
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P (Precision) denotes the proportion of samples predicted as
positive by the model that are truly positive, while R (Re-
call) represents the proportion of all truly positive samples
that the model successfully predicts as positive. mAP (mean
Average Precision) is the average value under the Precision-
Recall curve, providing a comprehensive assessment of both
the model’s accuracy and recall.

Results Analysis

In the YOLOVS5s model results after 100 epochs are shown.
Loss analysis reveals bounding box loss (box;,ss) and cat-
egory loss (clsj,ss) converge swiftly, with bounding box
loss slowing around 50 epochs and category loss converg-
ing around 25 epochs. However, confidence loss (0bjoss)
converges slowly, displaying oscillations. Training set con-
fidence loss decreases after 100 epochs, while validation set
confidence loss stabilizes between 50 and 100 epochs, sug-
gesting a risk of overfitting with prolonged training.

The reason for this situation may be due to the inter-class
similarity in the dataset, where the single-channel grayscale
images have similar features among different categories.
This can result in the model being influenced by a lot of
noise and not effectively learning the distinctive key features
of each class

Figure 6 displays YOLOVS5s’ P-R curves after 100 epochs,
yielding an mAP of 0.766, the mean across six defect
types. In-depth analysis reveals subtle features in crazing
and rolled-in scale, challenging the model and causing per-
formance decline, highlighting a significant issue in the steel
surface defect dataset.

Upon careful analysis, it was noticed that two types of de-
fects, namely silver lines and rolled scales, have less dis-
tinct features compared to the original background. The
model might not have effectively learned the characteris-
tics of these two defect classes. This poses a challenge in
the steel surface defect dataset. In future research, a possi-
ble approach could be to focus on these two defect classes
and further investigate how to extract their specific shapes
and patterns. By enhancing the model’s ability to differenti-
ate these two classes, the overall performance of the model
can be improved.

In addition to presenting the training results and P-R curves
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Table 1: Model Performance Comparison

Figure 6: The model’s accuracy and recall gradually in-
crease and converge over time. Around the 25th epoch,
the growth rate of both accuracy and recall starts to slow
down. The mean Average Precision (mAP) exhibits a similar
growth curve, eventually stabilizing at around 0.8. Overall,
the model performs well on the steel surface defect dataset.
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Figure 7: Among spots, pitted surface, inclusions, and
scratches, individual mAPs are 0.942, 0.835, 0.830, and
0.943, surpassing the overall average. Conversely, crazing
and rolled-in scale perform poorly, with mAPs of 0.447 and
0.601, impacting overall model performance.

of the YOLOVSs base model, this paper introduces enhance-
ments to YOLOv5s. SE, ECA, CBAM, and CA attention
mechanisms are added after the multi-scale feature fusion
module in the neck, which outputs feature maps at three
scales. Comparative experiments are conducted, and the
EloU is employed as the bounding box loss to further ex-
plore the model’s performance.

In Table 1, attention mechanisms enhance model perfor-
mance. Despite SE module’s notable increase in layers and
parameters, it provides a modest 0.2% improvement. ECA,
with comparable parameters, achieves a more substantial
1.2% boost. CBAM, with the largest parameter increase,
leads to a 1.7% improvement. CA, with a modest parame-
ter rise, exhibits the most significant improvement at 2.4%.
Notably, all attention modules maintain operational speed
around 16.0 GFLOPs, ensuring enhanced performance with-
out compromising computational efficiency.

Model Network  Parameters GFLOPs mAP@0.5
Layers
base 2702 7035811 16.0 0.766
+SE 2917 7078819 16.0 0.768
+ECA 282 7035820 16.0 0.778
+CBAM 303 7079113  16.1 0.783
+CA 300 7071491 16.0 0.790
Conclusion

In the context of surface defects in steel, there are significant
similarities between defect categories and substantial vari-
ations within the categories. Additionally, the imaging of
defects is often influenced by different materials and lighting
conditions, resulting in varying image quality. Furthermore,
in real industrial production lines, steel production occurs
at a certain speed, necessitating defect detection algorithms
to deliver both precision and real-time performance to
meet the practical needs of industrial production. The
proposed improvements to the single-stage object detection
algorithm YOLOV5 not only enhance precision but also
consider inference speed, offering significant advantages
for deployment in real-world industrial environments.

1. In actual industrial production scenarios, controlling the
rate of substandard products results in a severe imbal-
ance between positive and negative data samples, with
a scarcity of defect samples and a large number of un-
labeled images. Under weakly supervised conditions, it
becomes more effective to utilize data samples.

2. The addition of attention mechanisms can enhance the
model’s perceptual capabilities and improve its ability
to learn features, enabling the deep learning of unique
characteristics of each defect and distinguishing between
them. This reduces the impact of image noise and envi-
ronmental factors during actual detection.

3. The use of EloU is more in line with the practical situ-
ation of defect detection, enhancing the model’s robust-
ness and enabling it to perform pre-detection tasks ef-
fectively and generate reasonable prediction boxes when
confronted with different datasets or deployed on differ-
ent production lines.

The experimental results on the NEU-DET steel surface de-
fect dataset from Northeastern University demonstrate that
various improvement modules have enhanced the model’s
performance, with the highest improvement reaching 2.4%,
resulting in the best mAP value of 79.0%. Meanwhile, the
increase in model parameters is minimal, and the compu-
tational workload of the model remains largely unchanged.
This validates that by only adding a portion of computational
resources, the model’s performance can be improved with-
out affecting the inference speed.
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