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Abstract

Anomaly detection is an important application in large-scale
industrial manufacturing. And Reconstruction-based meth-
ods play an important role in unsupervised anomaly detection
in images.We introduce an In-painting method for Anomaly
Detection and propose a novel approach to constructing
pseudo-anomalous images.Our method learns a joint repre-
sentation of anomalous images and their anomaly-free recon-
structions, while simultaneously learning a decision bound-
ary between normal and anomalous examples.On the chal-
lenging Visa anomaly detection dataset, we get good perfor-
mance.

Introduction

Image anomaly detection and localization task aims to
identify abnormal images and locate abnormal subregions.
The technique to detect the various anomalies of inter-
est has a broad set of applications in industrial inspec-
tion(Bergmann et al. 2019a)(Defard et al. 2021).

In industrial scenarios, anomaly detection and localiza-
tion is especially hard, as abnormal samples are scarce
and anomalies can vary from subtle changes such as thin
scratches to large structural defects, e.g. missing parts. Some
examples from the MVTec AD benchmark (Bergmann et al.
2019a) along with results from our proposed method are
shown in Figure 1.This situation prohibits the supervised
methods from approaching.

Reconstructive  methods, such as Autoencoders
(Bergmann et al. 2019b)(Akcay, Atapour-Abarghouei,
and Breckon 2019)(Tang et al. 2020) and GANs(Schlegl
et al. 2017)(Schlegl et al. 2019)], have been extensively
explored since they enable learning of a powerful re-
construction subspace, using only anomaly-free images.
Relying on poor reconstruction capability of anomalous
regions, not observed in training, the anomalies can then be
detected by thresholding the difference between the input
image and its reconstruction.

Howeyver, the traditional reconstruction method is still
challenging when it is determined whether there is no sig-
nificant difference between the existence and the normal ap-
pearance.Recent research has taken into account the differ-
ences between the network extracted from the general net-
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Figure 1: Visualization of samples in MVTec AD. The pro-
duced anomaly maps superimposed on the images. Anomaly
region of high anomaly score is colored with orange. The red
boundary denotes contours of actual segmentation maps for
anomalies.

work and the network specially used for the network without
abnormal images to improve the discernic.At the same time,
some dense clusters focusing on non -abnormal texture in
the deep space to prevent abnormalities from being mapped
to the position close to the abnormal sample.

One of the disadvantages of generating methods is that
they only learn models from non -abnormal data, and they
cannot explicitly optimize the discriminator abnormal de-
tection, because they cannot obtain positive examples (that
is, abnormal) during training.Although the use of synthetic
abnormalities can be considered to train the discriminating
division method, this often leads to excessive fitting of the
synthetic appearance, and it makes it difficult for the learn-
ing boundary to be learned to be promoted to real abnormal-
ities.

In order to solve this problem, we consider a type of gen-
erating model -diffusion model (DM), which has achieved
significant success in image generation.The diffusion model
adds noise to the image by iteratively, and then iterates the
noise, thereby realizing the mapping of the image to a spe-
cific flow.We believe that we can use the diffusion model to



learn the characteristics of flow mapping and use it for un-
supervised external detection.By reinforcing the image from
the original current and using the training model for repair
and mapping, we can measure the distance between the im-
age and the original image, and the image outside the detec-
tion domain is based on this distance.

We propose, as our main contribution, a new deep sur-
face anomaly detection network, discriminatively trained in
an end-to-end manner on synthetically generated just-out-
of-distribution patterns, which do not have to faithfully rep-
resent the target-domain anomalies.

In this paper,the network is composed of a reconstructive
subnetwork, followed by a discriminative sub-network.The
reconstructive sub-network is a diffusion model trained on
the in-domain data is repaired to map the elevated image,
while the discriminative subnetwork learns a discriminative
model over the joint appearance of the original and recon-
structed images, producing a high-fidelity per-pixel anomaly
detection map.

Overall, our study proposes two unique approaches to im-
prove the performance of image anomaly detection and un-
supervised extraterritorial detection. By improving the re-
constructed subnetwork of the deep surface anomaly de-
tection network, we avoid the overfitting problem of syn-
thetic appearance and improve the generalization ability of
the model At the same time, by introducing the diffusion
model for extraterritorial detection, we take advantage of the
diffusion model to learn manifold mapping and realize unsu-
pervised extraterritorial detection. These two methods com-
plement each other and bring new possibilities to the field of
anomaly detection.

In this work, we explore a novel approach, in which brings
new possibilities to the field of anomaly detection. Our con-
tributions are as follows

* We introduce an effective in-painting model to recon-
struct more real images,which is significant for segmen-
tation.

* We propose a novel method to generate pseudo-
anomalous images,and it is close to real anomalous im-
ages

* We get good performance in both image-auroc and pixel-
auroc in the VisA dataset

Related Work

Many surface anomaly detection methods focus on im-
age reconstruction and detect anomalies based on im-
age reconstruction error.Autoencoders (Zhou and Paffen-
roth 2017)(Kingma and Welling 2019)are trained on data of
healthy subjects. Any deviations from the learned distribu-
tion then lead to a high anomaly score.Other approaches fo-
cus on Generative Adversarial Networks (GANs) (Goodfel-
low et al. 2017) for image-to-image translation(Baumgartner
et al. 2017).

However, training of GANs is challenging and requires a
lot of hyperparameter tuning. Furthermore, additional loss
terms and changes to the architecture are required to ensure
cycle-consistent results.In (Schlegl et al. 2019)(Schlegl et al.

2017), a GAN (Goodfellow et al. 2019) is trained to gener-
ate images that fit the training distribution. In (Schlegl et al.
2019) an encoder network is additionally trained that finds
the latent representation of the input image that minimizes
the reconstruction loss when used as the input by the pre-
trained generator. The anomaly score is then based on the
reconstruction quality and the discriminator output. In (Wu
et al. 2020)an interpolation auto-encoder is trained to learn
a dense representation space of in-distribution samples. The
anomaly score is then based on a discriminator, trained to es-
timate the distance between the input-input and input-output
joint distributions, however the approach to surface anomaly
detection remains generative as the discriminator evaluates
the reconstruction quality.

Instead of the commonly used image space reconstruc-
tion, the reconstruction of pretrained network features can
also be used for surface anomaly detection (Bergmann et al.
2019a)(Shi, Yang, and Qi 2021). Anomalies are detected
based on the assumption that features of a pre-trained net-
work will not be faithfully reconstructued by another net-
work trained only on anomaly-free images. Alternatively
(Defard et al. 2021) propose surface anomaly detection as
identifying significant deviations from a Gaussian fitted to
anomaly-free features of a pre-trained network.This requires
a unimodal distribution of the anomaly-free visual features
which is problematic on diverse datasets.

Recently, a class of generative models — the diffusion
models (DM)(Sohl-Dickstein et al. 2015)(Ho et al. 2022)—
have gained increasing popularity. DMs formulate two pro-
cesses: The forward process converts an image to a sam-
ple drawn from a noise distribution by iteratively adding
noise to its pixels; the backward process maps a noise image
towards a specific image manifold by iteratively removing
noise from the image. A dedicated neural network is trained
to perform the denoising steps in the backward process.

Proposed method

The proposed discriminative joint reconstructionanomaly
embedding method is composed from an in-painting and
a discriminative sub-networks. The reconstructive sub-
network is trained to implicitly detect and reconstruct
anomalies, employing semantically plausible anomaly-free
content while preserving the non-anomalous regions of the
input image. Concurrently, the discriminative sub-network
learns a joint reconstruction-anomaly embedding and gen-
erates accurate anomaly segmentation maps from the con-
catenated reconstructed and original appearances.. And we
propose a new way to to constructing pseudo-anomalous im-
agewhich can generate images that are closer to real anoma-
lies.

An New Anomaly Simulation Strategy

In traditional reconstruction methods, artificial anomalies
are added to the entire image to generate pseudo-anomalous
images, which are then subjected to image reconstruction.
However, we know that anomalies only occur on the sur-
face of objects and do not manifest in the background image.
Adding noise to the background is meaningless. Therefore,



we extract the foreground of the image, add noise only to
the surface of objects, thereby generating pseudo-anomalous
images that better align with real scenarios. This process
leads to improved reconstruction training.  We show the
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Figure 2: The three steps to add noise to generate pseudo-
anomalous images

method steps in Fig.2. First, generate two-dimensional Per-
lin noise, and then obtain a mask through binarization with
a threshold T. Considering that some industrial components
in the image are relatively small in proportion, directly pro-
cessing data augmentation can easily introduce noise in the
background of the image. Therefore, we adopt a foreground
enhancement strategy for such images. That is, binarize the
input image to obtain a mask and use opening or similar
operations to remove noise generated during the binariza-
tion process. Subsequently, the final mask image is obtained
by element-wise multiplication of the two obtained masks.
Then, perform element-wise multiplication of the mask im-
age and the noise image, introducing a transparency factor
in this process to balance the fusion of the original image
and the noise image, making the simulated anomaly patterns
closer to real anomalies. Finally, invert the mask image M,
and then perform element-wise multiplication with the orig-
inal image I to obtain the image I’, resulting in the final sim-
ulated anomalous image.

In-painting Model Reconstruction

The reconstruction sub-network uses in-painting
method.we extend the image-level filtering to the deep
feature level and propose the semantic filtering, which can
complete large missing areas but loses details.To address the
issues, we propose a novel filtering technique, Multi-level
Interactive Siamese Filtering (MISF), which contains two
branches: kernel prediction branch (KPB) and semantic
image filtering branch (SIFB). These two branches are
interactively linked at semantic pixel levels. SIFB provides
multi-level features for KPB while KPB predicts dynamic
kernels for SIFB. MISF can utilize the smoothness prior
across neighbors explicitly and reconstruct clean pixels or
features by linearly combining the neighbors.

I'=10K ey

where] € RW*H is the corrupted image and I’ €
RW>*His the completed counterpart. The tensor K €

RW>HXN? contains HW kernels for filtering all pixels. The

operation ® denotes the pixel-wise filtering. We can expand
the above equation as

I'lpl =Y Kpla—plIld] 2)

qeNp

Here, p and q are the coordinates of pixels in the image
while the set N,, contains N2 neighboring pixels of p. The
matrix K, € RY*¥is the pth vector of K and determines
the weights for all pixels in N, which is also known as the
kernel for the pixel p  Predictive filtering is a widely used
image restoration technique and can address image denois-
ing tasks. Here, we formulate the image inpainting as the
pixel-wise predictive filtering task.For image inpainting, the
pixels at the boundary of missing areas are reasoned by their
neighboring pixels. The principle is that the missing pixels
do not break the local structure. Meanwhile, the related pix-
els can be used to reconstruct the missing pixels. However,
the local structures around missing pixels are diverse and
may distinguish them from each other. To adapt the context
variations, we can train a predictive network to estimate the
kernels for all pixels according to the input image.

K =o(I) 3)

Our semantic filtering is an improved encoder-decoder
network that contains an extra ’dynamic convolution
layer.We show the framework in Fig.3 . MISF further makes
the dynamic process conditional on the multi-level features.
As a result, the parameters of the dynamic convolution are
element-wise and dynamically tuned according to different
images and their semantic meaning through the predictive
network. The advantages of dynamic convolution have been
evidenced in many works. However, these works mainly
focus on the image classification task. They predict con-
volutional parameters dynamically, according to the input
features. In contrast, our work presents the importance of
dynamic convolution for image inpainting and predicts dy-
namic convolutional parameters based on the raw input and
deep features jointly with an element-wise way.

Discriminative sub-network

The discriminative sub-network uses U-Net [21]-like ar-
chitecture. The sub-network input Ic is defined as the
channel-wise concatenation of the reconstructive subnet-
work output Ir and the input image I. Due to the normality-
restoring property of the reconstructive subnetwork, the joint
appearance of I and Ir differs significantly in anomalous
images, providing the information necessary for anomaly
segmentation.The discriminative sub-network learns the ap-
propriate distance measure automatically. The network out-
puts an anomaly score map Mo of the same size as I. Fo-
cal Loss[14] (Lseg) is applied on the discriminative sub-
network output to increase robustness towards accurate seg-
mentation of hard examples.

Experiments
Experimental Setup

Dataset The VisA dataset contains 12 subsets correspond-
ing to 12 different objects. Figure 5 gives images in VisA.
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Figure 3: The overview of inpainting model.SIFB provides
multi-level features for KPB while KPB predicts dynamic
kernels for SIFB
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There are 10,821 images with 9,621 normal and 1,200
anomalous samples. Four subsets are different types of
printed circuit boards (PCB) with relatively complex struc-
tures containing transistors, capacitors, chips, etc. For the
case of multiple instances in a view, we collect four subsets:
Capsules, Candles, Macaronil and Macaroni2. Instances
in Capsules and Macaroni2 largely differ in locations and
poses. Moreover, we collect four subsets including Cashew,
Chewing gum, Fryum and Pipe fryum, where objects are
roughly aligned. The anomalous images contain various
flaws, including surface defects such as scratches, dents,
color spots or crack, and structural defects like misplace-
ment or missing parts. There are 5-20 images per defect
type and an image may contain multiple defects. The defects
were manually generated to produce realistic anomalies. All
images were acquired using a high-resolution RGB sensor.
Both image and pixel-level annotations are provided.

Evaluation Metrics We used the area under the receiver
operator curve (AUROC) based on produced anomaly scores
to calculate anomaly detection at image-level performance
(AUROC sample). Localization performance was evaluated
using the AUROC at pixel-level.

Experiments results

We present our results in three categories:anomaly detec-
tion,anomaly localization,qualitative results.

Anomaly Detection We extensively compare our method
with those published methods in the past two years.The
comparison results on Visa are shown in Table 1.For a fair
comparison, we reproduce all these methods with the same
backbone as in our model. Thus, despite using the unmod-
ified code from the official repositories, we are not able to
exactly reproduce the original results, but our numbers are
very close.We get good performance in image-auroc and
0.5% higher than NSA(ECCV 2022) and 7.6% higher than

NSA PyramidFlow RD++

(ECCV2022) (CVPR2023) (CVPR2023) Ours
candle 90.1 78.9 95.6 95.9
capsules 87.6 81.9 89.0 95.0
cashew 92.7 93.7 98.2 94.7
chewinggum  96.0 87.5 98.3 90.2
fryum 90.3 83.9 95.3 88.6
macaroni | 95.6 80.3 93.6 95.2
macaroni2 71.8 76.4 83.0 85.3
pebl 93.5 89.9 96.8 89.6
pcb2 97.7 88.7 95.8 92.1
pcb3 93.5 78.6 96.8 93.0
pcb4 96.6 89.6 99.6 96.7
pipe_fryum  94.2 84.0 99.7 88.5
average 91.6 84.5 95.1 92.1

Table 1: Detailed image-level AUROC on the Visa dataset

NSA PyramidFlow RD++ Ours

(ECCV2022) (CVPR2023) (CVPR2023)
candle 97.8 75.4 98.3 92.6
capsules 84.4 95.8 99.3 96.9
cashew 85.5 94.6 94.0 91.7
chewinggum 98.5 953 98.0 97.6
fryum 80.5 93.7 96.7 89.4
macaronil 85.9 95.4 99.7 95.0
macaroni2 76.0 94.1 98.2 98.6
pebl 84.5 97.3 99.8 96.8
pcb2 94.1 96.9 98.8 90.7
pcb3 93.3 97.5 99.3 85.3
pcb4 96.7 90.1 98.5 91.1
pipe_fryum  97.5 97.4 99.0 97.8
average 89.6 93.6 98.3 93.6

Table 2: Detailed pixel-level AUROC on the Visa dataset

PyramidFlow(CVPR 2023). Compare to SOTA, we slightly
lower about 3% to the RD++(CVPR 2023).

Anomaly Localization Our method can achieve signifi-
cantly better results than some methods depending on patch-
wise discrepancy.Note that the results in Table 2 show
that our method can achieve much better results than NSA
and equal to Pyramid when using the same backbone.
What’s more, in addition to the macaroni2 class, our method
achieves best performance in these methods.

Qualitative Results The following is the visualization of
our results Fig4. It can be seen that our method can bet-
ter locate the area where the anomaly is located, which is
very close to groundtruth, which provides convenience for
the anomaly detection of our industrial components.

Conclusion

We propose a new algorithm for industrial anomaly de-
tection and localization with reconstruction sub-network
and the discriminative sub-network.We introduce inpainting
method to reconstruct more real.In addition, We use a novel
method to generate pseudo-anomalous images. Our model
gets good performance and this is a remarkable result since
our model is not trained on real anomalies. We find that an
accurate decision boundary can be well estimated by learn-
ing the extent of deviation from reconstruction on simple
simulations rather than learning either the normality or real
anomaly appearance.However,It does not perform well in



Figure 4: Anomalies in Visa from left to right: “cashew”,
“chewinggum?”, ”fryum”,’pcb3”

the case of missing parts,we will focus on this problem and
look for more efficient segmentation methods
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