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Abstract

Recently, many learning-based Index Advisors (IA) have
been proposed to optimize index selection. Most of
them model the index selection process as a Reinforce-
ment Learning (RL) problem, which learns from interac-
tions with databases through the workload. Learning-based
IAs have shown more promise in index selection than
heuristic-based IAs. However, they also introduce new se-
curity challenges, such as the risk of training data poi-
soning during model updates. In this paper, we make
the first attempt of poisoning attacks on learning-based
IA. We propose PIDPA (Probing-Injecting Data
Poisoning Attack), a two-step poisoning framework
that can launch an effective attack by only being a user of
the victim IA, without knowing its internal structure or inter-
fering with its training process. PIDPA probes the IA’s index
preferences to guide the attack in the probing stage and de-
termines an optimal attack strategy by combining index pref-
erences with the characteristics of the victim IA in the attack
stage. We also introduce IABART (Index Aware BART),
an index-aware workload generator that can produce tailored
workloads based on specific index requirements for PIDPA .
Our extensive experiments on various learning-based IAs un-
der popular benchmarks demonstrate the effectiveness of our
attacks on different IAs, datasets, and attack workload pro-
portions. Finally, we analyze the principles of our attack
based on different characteristics of victim IAs such as agent
structure and state representation to guide more secure design
of learning-based IAs in the future.

Introduction
Index selection is crucial for relational database systems.
Traditional index selection relies on expert database admin-
istrators, which is costly. To automate this process, many au-
tomated Index Advisors (IA) have been proposed. Recently,
learning-based IAs using Reinforcement Learning (RL) to
select indexes have gained attention due to their ability to
learn from data such as workloads and underlying data struc-
tures. However, learning-based IAs are vulnerable to poison-
ing attacks as a machine learning model. These attacks can
be launched by users of IAs such as other tenants of a cloud
database with low data isolation or other users of the same
database or even ourselves who submit a burst of database
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Figure 1: An example of IA poisoning attack

transactions that are unrelated to the daily database transac-
tions. Figure 1 illustrates a case of IA poisoning attack in an
opaque-box scenario.

In this paper, we make the first attempt of poisoning at-
tacks on learning-based IAs and evaluate their vulnerabil-
ity. we propose PIDPA (Probing-Injecting Data
Poisoning Attack), which consists of two stages. As
shown in Figure 2, the first stage is a probing stage. Given a
probing budget (i.e., number of iterations and the number of
probing workloads allowed in each iteration), PIDPA per-
ceives the victim IA’s action preferences by repeatedly gen-
erating a small batch of probing workload and observing
the victim IA’s output index configurations. The genera-
tion of probing workload is achieved by calling a workload
generator IABART(Section 5) that can tailor the workload
given the desired index performance. The second stage is
the attacking stage. PIDPA generates the attacking work-
load based on the perceived action preferences and injects
the attacking workload to retrain the victim IA. Again the
generation of the attacking workload is achieved by calling
IABART.



Related Work
Index Advisor
Conventionally, most IAs are based on heuristic algorithms
(Whang 1987; Bruno and Chaudhuri 2005; Chaudhuri and
Narasayya 1997; Schlosser, Kossmann, and Boissier 2019).
However, the latest learning-based index advisors show new
promise in accuracy and efficiency. Most learning-based
IAs learn from workload and model the index selection
process as a Markov Decision Process (MDP) (Sharma,
Schuhknecht, and Dittrich 2018; Lan, Bao, and Peng 2020;
Sadri, Gruenwald, and Lead 2020; Sadri, Gruenwald, and
Leal 2020; Perera et al. 2021; Kossmann, Kastius, and
Schlosser 2022). This technology works by training an agent
that takes the current state as input, outputs a predicted ac-
tion to maximize the reward function, and updates param-
eters using the true reward from the environment. In this
process, the model captures valuable information in the data
through the state and reward during index selection and
stores it in the form of agent parameters. In other words,
the state, reward, and agent reflect the model’s dependence
on data, which is also key to the effectiveness of poisoning
attacks.

For the state representation, different works have dif-
ferences in index candidate composition and workload-
aware capabilities. For instance, SmartIX (Paludo Licks
et al. 2020) considers only the current single-attribute index
configuration. NoDBA (Sharma, Schuhknecht, and Dittrich
2018) represents the state as a combination of the current
single-attribute index configuration and a matrix containing
each attribute’s selectivity. DQN (Lan, Bao, and Peng 2020)
represents it as a combination of current multi-attribute in-
dex configuration selected by predefined rules and queries
frequency in the workload. DRLinda (Sadri, Gruenwald, and
Lead 2020; Sadri, Gruenwald, and Leal 2020), which con-
siders multiple instances in a database cluster, uses a binary
query-attribute matrix, an access vector, and a density vector
to count each attribute’s frequency and selectivity. SWIRL
(Kossmann, Kastius, and Schlosser 2022) takes into account
not only the multi-attribute indexes configuration represen-
tation of the current state but also the queries’ representation,
frequencies and estimated costs.

For the reward function, SmartIX (Paludo Licks et al.
2020) uses TPCH benchmark indices to measure reward;
NoDBA (Sharma, Schuhknecht, and Dittrich 2018) and
DQN (Lan, Bao, and Peng 2020) use absolute cost reduc-
tion; DBAbandits (Perera et al. 2021) and SWIRL (Koss-
mann, Kastius, and Schlosser 2022) use relative cost reduc-
tion, which additionally considers storage and build costs.

For the agent network, NoDBA (Sharma, Schuhknecht,
and Dittrich 2018) and SmartIX (Paludo Licks et al. 2020)
use a simple MLP (LeCun, Bengio, and Hinton 2015); DQN
(Lan, Bao, and Peng 2020) and DRLinda (Sadri, Gruen-
wald, and Lead 2020; Sadri, Gruenwald, and Leal 2020)
use a traditional value-based DRL model DQN (Mnih et al.
2013); SWIRL (Kossmann, Kastius, and Schlosser 2022)
uses a policy-based DRL model PPO (Schulman et al. 2017).
DBAbandit (Perera et al. 2021), on the other hand, uses a
non-DRL-based agent, a multi-armed slot machine based al-

gorithm called C2UCB.
In addition, a small number of learning-based algorithms

work by Monte Carlo Tree Search (MCTS) (Browne et al.
2012; Zhou et al. 2022). They refine heuristics for index
benefit estimation by learning from rollout which differ from
learning from workload and data. This means that such mod-
els cannot be updated online: a change in workload means
that they need to recalculate the rewards from rollout for all
nodes of the tree.

Poisoning Attack
A poisoning attack occurs when an attacker influences the
training process such as injecting the false training data into
a machine learning model to corrupt it (Liu and Lai 2021).
There are poisoning attacks for RL (Rakhsha et al. 2020; Ma
et al. 2019; Behzadan and Munir 2017; Zhang et al. 2020;
Sun, Huo, and Huang 2020; Rakhsha et al. 2021; Liu and
Lai 2021), supervised learning (Biggio et al. 2013; Jagiel-
ski et al. 2018; Biggio, Nelson, and Laskov 2012), and un-
supervised learning (Yang et al. 2017). From a capability
perspective, RL poisoning attacks can be further classified
into clear-box attacks (Ma et al. 2019; Behzadan and Munir
2017; Rakhsha et al. 2020; Zhang et al. 2020) and opaque-
box attacks (Sun, Huo, and Huang 2020; Rakhsha et al.
2021; Liu and Lai 2021).

In terms of attack implementation details, existing re-
search on poisoning attacks against RL has identified three
types of adversarial manipulations. In the observation poi-
soning attack setting, the attacker can manipulate the agent’s
observation and alter its reward. Some studies assume that
the victim model is known (Ma et al. 2019; Behzadan and
Munir 2017; Zhang et al. 2020), while others assume that
it is unknown (Sun, Huo, and Huang 2020; Rakhsha et al.
2021). In the environment poisoning attack setting, the at-
tacker can alter the underlying environment (Rakhsha et al.
2020). In the action poisoning attack setting, the attacker
can change the agent’s action(Liu and Lai 2021).

Our poisoning attack differs significantly from all three
types as it does not require any ability to interfere with the
agent’s reward, environment or action. Our approach also
differs from another line of research on poisoning attacks
against learned index structures (Kornaropoulos, Ren, and
Tamassia 2020), which assumes a clear-box setting.

Proposed Solution
Our work considers four issues that are important to be ad-
dressed

I1: Opaque-Box Poisoning Attack. To make our attack
more realistic, we assume that attackers are only users of
the IA and have limited knowledge of its internal structure.
Thus, attackers have only two capabilities: (1) to submit
their workload as part of the training data used in IA up-
dates and (2) to observe the index selection results given by
the IA for a given workload. However, existing studies on
RL poisoning attacks usually assume that attackers can ei-
ther know the internal structure (Ma et al. 2019; Rakhsha
et al. 2020; Behzadan and Munir 2017; Zhang et al. 2020;
Liu and Lai 2021) or interfere with the internal training pro-
cess such as agent’s reward, environment, or action (Sun,
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Figure 2: Overview Framework of P2LIA.

Huo, and Huang 2020; Rakhsha et al. 2021; Liu and Lai
2021).

I2: Implicit Constraint Aware SQL Generator. The
workload is the only way for the attacker to interact with the
victim IA. Therefore, the attacker needs a powerful work-
load generator that can produce queries that: (1) follow the
SQL syntax specifications; (2) can be optimized by indexes,
ensuring the attacker can communicate with IAs; and (3)
satisfy specific index requirements, enabling the crafting of
workloads for particular indexes. However, existing stud-
ies on SQL generation either only generate SQL with ex-
plicit constraints, such as including column A in “where”
clauses (Slutz 1998; Seltenreich, Tang, and Mullender 2020;
Bruno, Chaudhuri, and Thomas 2006; Mishra, Koudas, and
Zuzarte 2008), or only generate SQL with a single im-
plicit constraint, such as generating SQL with a cardinal-
ity of 2000 (which does not generalize to other cardinali-
ties) (Zhang et al. 2022).

I3: Poisoning Attack Strategy. Existing learning-based
IAs have various characteristics. They can be categorized
based on their workload awareness (Perera et al. 2021; Sadri,
Gruenwald, and Lead 2020; Sadri, Gruenwald, and Leal
2020; Kossmann, Kastius, and Schlosser 2022), dynamic
adaptability (Perera et al. 2021; Kossmann, Kastius, and
Schlosser 2022), and neural network usage (Lan, Bao, and
Peng 2020; Sadri, Gruenwald, and Leal 2020; Kossmann,
Kastius, and Schlosser 2022), etc. It is still unclear whether
and what different attack strategies are needed to cope with
these different characteristics of victim IAs.

I4: Assessment of Existing Learning-based IAs. Most
existing learning-based IAs are designed mainly to improve
index selection performance, with little attention to perfor-
mance security. There is a lack of research on the perfor-

mance security of these models and an absence of evaluation
of the impact of their design details on performance security.

For the above four issues, we have made the following
four-fold contributions:

To address I1, we propose
PIDPA (Probing-Injecting Data Poisoning
Attack), a two-step poisoning attack framework. To
degrade the victim IAs’ performance, our framework aims
to: (1) obtain the preference ranking for each index in
the victim IAs in an opaque-box setting, and (2) use the
attack workload to change the preference ranking from
the optimal index to worse indexes, i.e., induce models to
favor worse indexes. Our framework obtains the preference
ranking in the probing stage using a designed probing
workload and uses the preference ranking to attack in
the attack stage using a designed attack workload. This
knowledge acquisition-knowledge utilization paradigm
provides a solution to limited knowledge and capabilities in
an opaque-box setting.

To address I2, we propose IABART (Index Aware
BART). We formulate the SQL generation task with im-
plicit index constraints as a Masked Span Prediction (MSP)
task (Song et al. 2019), treating “SQL + Index + Cost Reduc-
tion” as a sequence and performing a mask prediction task
on “<MASK> + Index + Cost Reduction”. IABARTis built
on the backbone of BART (Lewis et al. 2019), a large-scale
pre-trained language model (Devlin et al. 2018). Addition-
ally, we propose a progressive training procedure and use a
Finite State Machine (FSM) (Zhang et al. 2022) to enforce
syntactic constraints. Our IABARTis well-suited for index
constraint-aware SQL generation tasks and this paradigm is
general enough to be applied to other constraints.

To address I3, we propose several attack strategies to cope



with different learning-based IAs. Specifically, we catego-
rize the preference-changing goals into three types: subop-
timal indexes, bad indexes, and a hybrid of suboptimal and
bad indexes. We measure the attack effects of these three
goals on each type of victim IA and interpret them through
the bias-variance influence analysis. Moreover, we measure
the attack effect of randomly generated attack workloads,
representing unintentional attack behaviors such as burst
transactions from ourselves.

To address I4, we analyze the training process and perfor-
mance changes of four existing learning-based IAs during
the attack process. We evaluate the strengths and weaknesses
of each work’s internal design from a security perspective to
guide future learning-based IA designs towards more secu-
rity and stability. The effectiveness of poison attacks in the
opaque-box setting is a challenging issue. Since the attacker
cannot directly access the parameters of the victim IA, if the
injected workload W̃ is randomly generated, it is difficult
to manipulate the IA’s training purposely. However, the at-
tacker can interact with the IA by submitting a workload and
obtaining the IA’s recommended index configurations. Intu-
itively, the victim IA’s responses to different workloads ex-
pose the IA’s action preferences, i.e., which column is more
likely to be chosen to build indexes. According to the train-
ing paradigm in Section 3, the action preference depends on
the IA’s parameters ϕ, θ, which is effective on the original
workloads W1, · · · ,WM and reflects the workload charac-
teristics (e.g., frequency of columns in workloads). We can
use the action preference to supervise the attack (e.g., in-
ject workloads that can not be optimized using the preferred
column indexes), and eventually down-weigh the preferred
columns after re-training. As a result, the updated parame-
ters ϕ̃, θ̃ of the victim IA will be less effective on the original
workloads.

EXPERIMENT

In this section, we first report the attack performance of our
proposed two strategies on different datasets, data volumes
and different victim IAs (Section 6.2). We then investigate
the effect of different attacking workload proportion (Sec-
tion 6.3) and the effect of different optimal, sub-optimal,
and bad indexes division hyper-parameters (Section 6.4). Fi-
nally, we report some additional experiments, including a
performance report on IABART (Section 6.5), a case study
on extreme victim workload (Section 6.6), and a possible
case of index interaction influence (Section 6.7).

Experimental Setup

Victim Index Advisors. We select four different typical
works in learning-based index advisor, DQN (Lan, Bao,
and Peng 2020), DRLinda (Sadri, Gruenwald, and Lead
2020; Sadri, Gruenwald, and Leal 2020), SWIRL (Koss-
mann, Kastius, and Schlosser 2022), DBAbandit (Perera
et al. 2021), as our victim models, the design details of
which are briefly described in Section 2.1 and the attack part
of Section 3.2. We summarize them as shown in Table 1.

We use the open source code of DQN1, SWIRL2, DBA-
bandit3 and fully retain all the original hyperparameters. We
reproduced DRLinda, which has no open source, to the best
of our effort according to the design details described in the
DRLinda paper (Sadri, Gruenwald, and Lead 2020; Sadri,
Gruenwald, and Leal 2020).

Victim Datasets and Workloads. We choose two widely-
used open benchmarking datasets, TPC-H4 which contains
8 tables, 61 columns and 22 query templates, and TPC-DS5

which contains 25 tables, 429 columns and 99 query tem-
plates. We generate workloads using the query templates,
treating them as workloads of the victims. In the main exper-
iment in Section 6.2 and 6.3 we fixed the frequency of each
query template the same to SWIRL (Kossmann, Kastius, and
Schlosser 2022) and in Section 6.6 we will simply argue the
effect of extreme queries frequency distribution.

Evaluation Metrics. We use RR (Reward Reduction) be-
fore and after the attack as follows:

RR ≜
Rbefore attack −Rafter attack

Rbefore attack
∈ (−∞, 1], (1)

where the R is calculated by cost reduction and mapped to
the interval [0, 100). The closer the RR is to 1 means the
stronger the effect of the attack. And when the RR value is
less than 0, it means the attack has the opposite effect to
improve the performance of victim IA.

RR metrics are categorized into Best-RR and Mean-RR
based on different training modes of learning-based IAs. Ex-
periments were conducted on a database server and worksta-
tion. The program takes approximately 6 hours and is open
source.

Main Results
In this section we will measure the effectiveness of our two
attack strategies: S (sub-optimal indexes attack) and B (bad
indexes attack) on different victim IA. For this purpose, we
design three control groups for the two attack strategies as
follows:

• O: Original. We used the victim workload as the attack-
ing workload to conduct a poisoning attack. This strat-
egy serves as a control group, allowing us to more scien-
tifically incorporate factors such as updating epochs and
model volatility into our analysis.

1https://github.com/rmitbggroup/IndexAdvisor
2https://github.com/hyrise/index selection evaluation
3https://github.com/malingaperera/DBABandits
4http://www.tpc.org/tpch/
5http://www.tpc.org/tpcds/

Table 1: Victim Index Advisor

Victim Workload-Aware Dynamic Agent

DQN NO NO DQN
DRLinda YES NO DQN

DBAbandit NO YES C2UCB
SWIRL YES YES PPO
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Figure 3: Strategy Selection Experiment Results

• R: Random Indexes Attack. Using IA-BART, we gen-
erated workloads by selecting random index columns.
This strategy simulates an attack without prior knowl-
edge and can reflect the impact of unconscious poison-
ing attacks in real scenarios or serve as an ablation study
of our probing method.

• H: Hybrid Indexes Attack. Using IA-BART, we gener-
ated workloads by selecting both suboptimal and bad in-
dexes. This strategy exploits knowledge from the prob-
ing section by only ignoring the optimal index column
during the index column sampling process.

As shown in Figure 3, we performed poisoning attacks
on the four victim models mentioned in section 6.1 using
the five attack strategies described above on the TPCH and
TPCDS benchmarks. We selected data volumes of 1GB and
10GB for each benchmark, setting the attack workload pro-
portion of the total training workload to 0.5 and then calcu-
lated the Best-RR and Mean-RR.

The poisoning attack works differently for different vic-
tims. For SWIRL, the attack directly provides bad parame-
ters to the victim IA, while for DQN, DRLinda, and DBA-
bandit, the attack essentially provides a bad initial value to
the victim IA’s parameters.

Conclusion
In this paper, we made the first attempt at poisoning attacks
against learning-based IAs. First, we proposed to probe the
index preference under the opaque-box setting. Second, we
designed attacking workloads to trap IAs within local opti-
mum. Besides, we proposed a query generation method for
probing and attacking using large language models (BART).
Extensive experiments on different benchmarks against four
typical learning-based IAs demonstrated the effectiveness of
PIDPA.
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