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Abstract

Sequential recommendation aims to offer potentially interest-
ing products to users by capturing their historical sequence
of interacted items. With the emergence of multimedia ser-
vices, such as short video, news and etc., understanding these
contents while recommending becomes critical. Multi-modal
data that depicts a user’s historical interactions exists ubiq-
uitously, such as product pictures, textual descriptions, and
interacted item sequences, providing semantic information
from multiple perspectives that comprehensively describe a
user’s preferences. However, existing sequential recommen-
dation methods either fail to directly handle multi-modality or
suffer from high computational complexity. To address this,
we propose a novel Multi-Modal Multi-Fusion Architecture
for Sequential Recommendation(M2SR). It is a MLP-based
architecture that consists of two modules - the Feature Fu-
sion Layer and Prediction Layer - and has an edge on both
efficacy and efficiency. Extensive experiments show that the
multi-modal representation learned by our proposed model
generally benefits other recommendation models. Thus, the
Feature Fusion Layer proposed in our scheme can be applied
to enhance other recommendation models, thereby contribut-
ing to their significant improvement.

Introduction

With the rapid growth of e-commerce, users often find them-
selves overwhelmed by a multitude of trendy content, and
over time, their preferences undergo dynamic shifts. Captur-
ing this evolving preference has become a paramount task
for content providers.(Liu et al.|2016) Sequential Recom-
mendation Systems (SRS) gain a significant edge in depict-
ing how user behavior changes over time by modeling users’
historical interaction records and recommending items they
may interact with in the future. SRS plays a pivotal role in
contemporary life, spanning applications in search engines,
advertising systems, e-commerce platforms, video and mu-
sic streaming services, as well as various other online plat-
forms.

In recent years, the swift progress in deep learning has
given rise to a variety of deep learning-based sequential rec-
ommendation models.(Hidasi et al.|2015) Notably, two pre-
dominant approaches have emerged: those based on Recur-
rent Neural Networks (RNNs)(Hidasi et al.|[2015) and those
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employing self-attention mechanisms(Kang and McAuley
2018; |[Zhang et al.|[2019). RNNs are traditionally perceived
as highly effective in handling sequentially related data.
Nevertheless, even though they have achieved advanced per-
formance(Kang and McAuley|2018}Zhang et al.[2019), be it
through Long Short-Term Memory (LSTM)(Hochreiter and
Schmidhuber]|1997) or Gated Recurrent Units (GRU)(Cho
et al. 2014), they still grapple with challenges related to
sustaining long-term dependencies and parallel processing.
Self-attention(Vaswani et al|[2017), a burgeoning concept,
operates without these constraints, enabling the capture of
long-term relationships between items without depending on
their relative positions. Self-attention has achieved state-of-
the-art levels(Kang and McAuley|2018; Zhang et al.[2019).

While existing research(Li et al.[2022; Zhang et al.|2019)
has underscored the use of side information to accurately
model users’ sequential behavior, there has been limited ex-
ploration of multimodal sequential recommendations. User
sequential behavior is seldom considered as multimodal.
However, in the realm of recommendation systems, multi-
modal data is gaining increasing attention as it provides se-
mantic information from various perspectives of user inter-
actions. For instance, traditional sequential recommendation
systems may struggle to capture semantic information from
item images or textual descriptions, which can be crucial for
users interested in specific colors or types of vehicles. To
address this challenge, it is imperative to derive latent em-
beddings from different representations of items.

Related Work

ID-based recommender systems (IDRec)(Koren, Bell, and
Volinsky| 2009) have received much attention in the rec-
ommendation literature. They can be roughly divided into
two categories: non-sequential models (NSM) and sequen-
tial neural models (SRM). NSM includes various recall
models (e.g. DSSM, YouTube DNN(Covington, Adams,
and Sargin| 2016)) and CTR models (e.g. DeepFM(Guo
et al.[2017), Wide &Deep(Cheng et al.[[2016), Deep Cross-
ing(Shan et al.|[2016)). These models take user-item pairs
as input along with features to predict matching scores. In
contrast, SRM takes sequences of user-item interactions as
input to generate next interaction probabilities. Represen-
tative SRM includes GRU4Rec(Hidas1 et al. [2015)), Nex-
tItNet(Yuan et al.|2021), SR-GNN(Wu et al./[2019), SAS-



Rec(Kang and McAuley|[2018) and BERT4Rec(Sun et al.
2019) with RNN, CNN, GNN, Transformer and BERT as the
backbones,respectively, among which SASRec often per-
forms the best(Yuan et al.|[2022)).

Modality-based recommender systems (MoRec) mainly
focus on modeling the content features of different modal-
ities such as text(Wu et al.|[2020), images(McAuley et al.
20135)), videos(Deldjoo et al.[[2016), audio(Van den Oord,
Dieleman, and Schrauwen|2013) and multimodal text-image
pairs(Wu et al.|[2021). Previous work tended to adopt a
two-stage (TS) mechanism by first pre-extracting fixed item
modality features and then incorporating them into the rec-
ommendation model. Most of these works use modality as
side features and IDs as main features. End-to-end (E2E)
MoRec has gained popularity recently due to: (1) availabil-
ity of high-quality public datasets with original item modal-
ities; (2) advances in modality encoders (ME) like word em-
beddings. However, most existing E2E MoRec focus on text
recommendation(Hou et al.|[2022).

Recent studies have shown MLP-based architectures
demonstrate superior performance in computer vision (CV)
and natural language processing (NLP), comparable to
mainstream Transformers. In CV, representatives include
MLP-Mixer(Tolstikhin et al.|[2021)), resMLP(Touvron et al.
2022), etc. In NLP, pNLP-Mixer(Fusco, Pascual, and Staar
2022)achieve similar functionality to self-attention using to-
ken mixing and input weighted summation. For sequen-
tial recommendations, FMLP-REC(Zhou et al.|[2022) and
MLPA4Rec(L1 et al.|[2022) pioneered MLP-based models,
though they are not yet widely used for multimodal sequence
recommendation. Our proposed model provides an effective
MLP-based solution for this task.

Solution

A typical multi-modal sequential recommendation system,
as shown in Figure 1, incorporates both the user’s short-
term and long-term preferences through the display of in-
teraction history and sequence information. By leveraging
these details, the multi-modal sequential recommendation
system analyzes user preferences to provide recommenda-
tions for relevant items. Unlike item IDs that only reveal
partial sequential patterns, the multi-modal feature sequence
offers a more comprehensive view of underlying patterns.
Consequently, it has become increasingly common to inte-
grate item features using models based on recurrent neural
networks (RNNs) and self-attention mechanisms in order
to incorporate multi-modal features into sequential recom-
mendations (Zhang et al.|2019). However, RNNs fall short
in capturing long-term dependencies, and attention mecha-
nisms are computationally expensive.

To address the aforementioned issues, we propose a novel
method for sequential recommendation that effectively cap-
tures and integrates multi-modal information to generate in-
formative predictions for the next item. Our approach con-
sists of two key components: the Feature Fusion Layer and
the Prediction Layer. The Feature Fusion Layer includes
three fusion modules that intricately capture and blend the
multi-modal representations of multiple items, leveraging
attention mechanisms and graph neural networks to capture
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Figure 1: The general paradigm of multi-modal sequential
recommender system

dependencies and relationships between different modali-
ties. This fusion process results in a comprehensive repre-
sentation that is then passed to the Prediction Layer, which
generates the next item recommendation.

To validate the effectiveness of our proposed method, we
plan to evaluate it on benchmark datasets, namely Yelp and
Movielens 1M. Through extensive experiments and compre-
hensive analyses, we aim to demonstrate the superiority of
our approach over existing baseline sequential recommen-
dation methods and competitive auxiliary information inte-
gration methods on these datasets. Additionally, we envision
that the Feature Fusion Layer proposed in our scheme can be
applied to enhance other recommendation models, thereby
contributing to their significant improvement.

In summary, our proposed solution entails the following
aspects:

* We propose a novel multi-modal sequential recommen-
dation approach that integrates and aligns multi-modal
information in sequential recommendations, effectively
capturing users’ fine-grained preferences.

* We conduct extensive experiments to validate the effec-
tiveness of our proposed method and perform compre-
hensive analyses to verify the efficacy of each compo-
nent.

* We aim to enhance the compatibility of our solution and
explore the application of the proposed Feature Fusion
Layer to enhance other recommendation models, while
conducting relevant validations.

By addressing the limitations of existing sequential rec-
ommendation methods, our research contributes to the ad-
vancement of multi-modal sequential recommendation sys-
tems, leading to more accurate and personalized recommen-
dations across various domains. The proposed approach and
its empirical evaluations provide valuable insights for re-
searchers and practitioners in the field of recommendation
systems.

Framework

In this paper, we propose a multi-modal multi-fusion Ar-
chitecture for sequential recommendations(M2SR) that can
explicitly learn information from various modalities. The
framework consists of three layers: the Feature Mixer Layer,
Fusion Mixer Layer, and Prediction Layer.



Sequence

—
Image
Mixer

Yt

Text

X1
z 8 Ys

x g —» = 5
t —» i = L .

= =
o EE
Xy e — 77}

Sequence

sequence

Feature Mixer Layer

Channel
—
Text
Mixer
LayerNorm
GELU

—
&
<o
>
Sequence 5 .
i s - i = Z
|y z = Yf g =
Linear(-) s > £ —> % 3
@] = > 3
2 £ 5
S
@ Next item
Il
>
Fusion Mixer Prediction
Layer Layer

Figure 2: The framework overview of the proposed M2SR.

Our framework is flexible and can incorporate data in di-
verse modalities. We focus on images and texts in this pa-
per as they are the most commonly used modalities in ad-
dition to item sequences. As shown in Figure 2, image, text
and item sequences from the user-item interaction history
are used as input. We design three Mixer Modules in the
Feature Mixer Layer to extract and process image, text, and
item sequence information respectively. The Feature Mixer
Layer also includes layer normalization and residual con-
nections to enhance training stability. Next, we adopt a post-
fusion approach in the Fusion Mixer Layer by concatenating
the outputs Y, Y* and Y’ from the three Mixer Modules to
fuse the representations from multiple modalities. Finally,
we make next item recommendations in the Prediction Layer
based on the fused representation.

The Feature Mixer Layer contains three Mixer Modules
to extract image, text, and item sequence information re-
spectively. We first encode the multi-modality raw data into
embedding feature matrices. Specifically, we load images as
a feature matrix, utilize a pretrained model to encode text,
and set trainable embeddings for the item sequence. Next,
the three embedded inputs 7,7, and S from images, text,
and item sequences are fed into the Mixer Modules for pro-
cessing. As depicted in Figure 3, each Mixer Module com-
prises identical blocks, and each block performs two mixing
operations. We take image modality feature matrix I as an
example, while operations on text 7" and item sequence S
are identical. The first mixing is token mixing with a token
size of D;. The token mixer, denoted as T'M, acts on the
columns of I to capture token-level interactions within each
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Figure 3: The detailed architecture of Mixer Module.

channel. The output is then passed to a channel mixer C'M,
which operates on the rows of I to capture channel-level
interactions across tokens. Standard components including
residual connections and layer normalization are utilized to
stabilize training. For simplicity, the Mixer Module opera-
tions on the image feature matrix I can be denoted as:

~

I.;,=1.,+TM (LayerNorm(I),;), fori=1...Dy,

~

:fj,* = Aj,*"‘CM (LayerNorm(I)j,*> , forj=1...N,
(1

where I, ; represents the operations on the column dimen-
sion, i.e. cross-token processing, on the image matrix, and



I; . is the operations on the row dimension, i.e. cross-

channel processing. T denotes the intermediate representa-
tion for the image modality. Through the same process on T'

and S, we can obtain the intermediate text representation 7'

and sequence representation S.

We propose the Fusion Mixer Layer to fuse the represen-
tations from multiple modalities. A post-fusion approach is
adopted by concatenating the outputs Y¢, Y?, and Y* from
all the Mixer Modules and feeding them into the Fusion
Mixer Layer, which contains another mixer module. By fus-
ing multi-modal representations through the Fusion Mixer
Layer, we can obtain a comprehensive representation of the
user’s historical item interaction sequence. The output of the
Fusion Mixer Layer is formulated as:

XA’“' = A*,HrWMJ (ngLayerNorm(?)*yz) Jori=1...D,

@

where Y = Linear(Y||Y*||Y*) and is the concatenation op-
eration, so D = D; + Dy + Dg. Y/ is the output of the
block, which is the comprehensive representation consider-
ing multiple modalities W' € R"™~>*N and Wt ¢ RN*"~
denote the learnable weights of the first layer in the mixer.
Wt e RroXD and W6 ¢ RP*"0 are the learnable
weights of the second layer in the mixer.

We present the optimization algorithm for our proposed
model in Algorithm 1. We first randomly initialize the model
parameters (line 1). In each epoch, the training data is
split into batches (line 3). The feature matrices of the three
modalities X, T and S are then fed into the token mixers TM
and channel mixers CM to obtain the intermediate represen-
tations X, t and s respectively (line 4). Based on the image
mixer (line 5), text mixer (line 6) and sequence mixer (line
7), we can generate the representations YI, YT and YS cor-
responding to the three modalities. We fuse the multi-modal
features to get the comprehensive representation Yf based
on the Fusion Mixer Layer (line 8). The loss is calculated
and model parameters are updated via gradient descent un-
til convergence (line 9). Notably, the image mixer, text mixer
and sequence mixer only involve simple matrix multiplica-
tions, thus preserving the linear time complexity.

Experiment

We evaluate our model on two widely used benchmark
datasets - MovieLens 100K and MovieLens 1M2. The num-
ber of interactions and average sequence length are 99,287
(105) and 999,611 (165), respectively. We filter out items
and users with less than 5 interactions. The maximum se-
quence length is set as 50 for both datasets, with zero
padding for shorter sequences. For data splitting, the last
item in each interaction sequence is used as the test set,
the second last item as the validation set, and the remain-
ing items as the training set.

We evaluate the efficacy based on next-item prediction.
Two commonly used evaluation metrics for recommender
systems are adopted: mean reciprocal rank (MRR) and nor-
malized discounted cumulative gain (NDCG). MRR consid-

Algorithm 1: Optimization pipeline of M2SR

Input: Historical interacted item feature matrix of image
modality: I, text modality: T, item sequence: S
Output: Well-train model fy

1: Randomly initialize parameters of model fy.

2: for Epoch in 1,...,max epochs do

3:  for Batch in 1,...,batch number do

4: Generate the intermediate representation of three

modalities f, JA“, S by Eq. (1).

5 Learn image representation Y by Eq. (2).
6: Learn text representation Y by Eq. (1).
7: Learn sequence representation Y ° by Eq. (1).
8: Fuse the multi-modal features and get the compre-
hensive representation Y/ by Eq. (1).
9: Calculate the CrossEntropy loss and update 6.
10:  end for
11: end for

12: return Well-trained model fj.

ers the rank of the ground-truth item in the top-K recommen-
dation list, then averages it over all test instances. We report
the average MRR over 3 random seeds. NDCG measures the
ranking quality of the top-K recommendations generated by
the model. It assigns higher scores to ground-truth items ap-
pearing earlier in the ranked list.

Baselines. We compare the performance of our pro-
posedMMMLP model against several widely used baselines
in the field of recommender systems. These baselines in-
clude:FPMC, BPR, GRU4Rec, SASRec and MLPMixer.

* FPMC: FPMC combines Markov Chains and Matrix
Fac-torization method to learn the sequential dependen-
cies in userinteraction history as well as users’general
preferences.

* BPR: BPR builds matrix factorization model from pair-
wiseloss function to learn from implicit feedback, and it
is a classicalgeneral recommender system.

* GRU4Rec: GRU4Rec uses gated recurrent unit to im-
provethe performance of vanilla RNN, allowing it to mit-
igate the van-ishing gradient problem to some extent.

* SASRec: A sequential recommendation model based
onattention that uses a self-attention network for the gen-
eration ofsequential recommendations.

* MLPMixer: MLPMixer is our improved version of
MLP-Mixer to make it adapt to sequential recommenda-
tion tasksbased on item embeddings.

Our M2SR implementation and all baseline models are
built on the open-source recommendation library RecBole.
This provides a fair and reproducible environment for com-
paring different methods. Hyperparameters are set accord-
ing to the values reported in the original papers. The Adam
optimizer and early stopping are used for training. When de-
tailed hyperparameters are unavailable in the papers, we tune
them via cross-validation.

We set the learning rate to le-4, and fix the batch size
as 256.Moreover, to handle different item sequence lengths,
we use paddingto fill users whose interaction numbers are



Dataset Metric FPMC BPR GRU4Rec SASRec MLPMixer

ML-100K MRR@10 0.1314 0.1513 0.1829 0.1909 0.2144
i NDGG@10 0.1932 0.2132 0.2521 0.2704 0.2636
ML-1M MRR@10 0.2419 0.2959 0.3383 0.4043 0.4129
NDGG@10 0.3040 0.3535 0.4062 0.4430 0.4695
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Figure 5: Test result in ML-1M

less than the maximumsequence length, and use the most
recent interactions from userswith more interactions than
the maximum sequence length. We only used GELU as
the nonlinear activation across all mod-els for fair compar-
ison. To achieve efficient text modeling, we incorporate the
pre-trained bert-base-uncased provided by hug-gingface for
text data preprocessing. The implementation code is avail-
able online to ease reproducibility. We stop training after 200
epochs.Figure 4 shows the training details and the test results
in ML-100k.And Figure 5 shows the training details and the
test results in ML-1M.

Conclusion

This paper proposes M2SR, an MLP-based architecture
for multi-modal sequential recommendations. Specifically,
we design a unique Feature Mixer Layer to simultaneously
extract image, text, and item sequence information. We also
have a Fusion Mixer Layer to fuse these representations, and
a Prediction Layer to generate recommendations. Compared
to existing approaches, M2SR shows superior capabilities
in extracting and fusing multi-modal data, while preserving
linear computational complexity. Extensive experiments
on two benchmark datasets prove that M2SR consistently
surpasses other baseline methods. As a pioneering work in
multi-modal sequential recommendation context, M2SR
demonstrates high efficacy in combining multi-modal
information. Furthermore, compatibility analysis shows
our proposed mechanism of using multi-modal data can
enhance other existing methods.
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