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Abstract

This paper discusses the issue of memory consumption in
key-value (KV) caches during the language model infer-
ence process. To address this problem, we propose a prun-
ing method that utilizes attention scores as a metric to evalu-
ate the importance of each key. We introduce transformations
to the attention scores to correct statistical bias and empha-
size the importance of incorporating a forgetting factor into
the process. Statistical bias correction involves dividing the
columns of the attention score matrix by a factor related to
the number of accumulated scores and multiplying the rows
by a factor related to the position of the query. This mod-
ification ensures that the expected score for each key is 1,
thereby mitigating the bias caused by varying numbers of ac-
cumulated scores. The forgetting factor mechanism focuses
on recent query scores, capturing local dependencies, and
reducing computational overhead.Additionally, we introduce
an innovative quantization method that dynamically adjusts
the quantization precision based on the relevance of keys (K)
and values (V) vectors to the query (Q). The most relevant
keys are quantized with high precision, while less relevant or
irrelevant keys are compressed using lower resolutions. This
dynamic quantization process has the potential to improve
the efficiency of KV caches in large models. Experimental
evaluations will be conducted to validate the effectiveness of
the proposed pruning and quantization methods. These im-
provements aim to optimize the memory consumption of KV
caches in language model inference, thereby enhancing the
overall performance of language models.

Introduction
Introduction and Challenges of KV Cache
KV cache servers are a specialized type of high-speed
caching servers designed to store data in memory and
quickly respond to frequently accessed data requests. The
term ”KV” refers to the key-value model that these servers
employ, offering efficient data storage and fast read/write
access capabilities. They find extensive usage in distributed
systems, web applications, and large-scale enterprise appli-
cations.

In the field of natural language processing, training and
inference with language models often require substantial
computational resources and time. To enhance the efficiency
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Figure 1: The mechanism of KV cache.

of these models, Large Language Models (LLMs) incorpo-
rate the use of KV cache mechanisms. KV cache, acting as a
key-value database, is utilized to store pre-calculated con-
texts, responses, their representations, and computational
outcomes. In LLM models, when encountering a new con-
text or generating a response, the model stores the computed
results in the KV cache. Subsequently, when future con-
texts or responses match the cached keys, the model can re-
trieve the pre-calculated results directly from the KV cache,
thereby avoiding the need for recomputation.

KV cache reduces redundant computations by storing and
reusing results, thereby greatly enhancing the efficiency of
training and inference processes, as 1 shows.

This approach helps conserve computational resources
and reduces time requirements. In the case of dialogue sys-
tems and other tasks involving frequent interactions and
multi-turn conversations, KV cache plays a crucial role. By
rapidly providing access to previously computed results, it
significantly accelerates the system’s response time, improv-
ing the overall user experience.

However, the drawbacks of KV cache become apparent
in certain aspects. Firstly, it necessitates a certain amount of
memory space to store previously computed results. If the
volume of cached data is substantial, it can require a signif-
icant amount of memory resources. Additionally, the con-



tents of the KV cache are based on past input data and the
corresponding computed results. If the input data changes
but the KV cache is not promptly updated, inconsistencies
may arise between the cached data and the actual situation.
This article focuses on addressing the challenge of excessive
memory usage associated with KV cache.

Current Solutions
Pruning and quantization are common techniques for reduc-
ing KV cache.

Pruning is a method that reduces the model’s size and
memory footprint by removing redundant or unnecessary
parameters or computation results. For KV cache, pruning
can reduce memory usage by removing infrequently used or
relatively unimportant key-value pairs. This retains only the
most useful results, reducing memory consumption.

Quantization is the process of converting parameters or
computation results from floating-point representations to
lower-precision fixed-point or integer representations. For
KV cache, quantization can convert computation results
represented as floating-point numbers into smaller integer
or fixed-point representations. This conversion can signifi-
cantly reduce the number of bits needed for storage, thus
lowering memory usage.

Problems and methods
In this paper, we focus on using pruning to reduce the size
of the KV cache.

Current KV cache pruning methods, such as H2O (Zhang
et al. 2023) and Scissorhands (Liu et al. 2023), utilize atten-
tion matrices to compute the importance of each key. Based
on this importance, they prune the key-value pairs. How-
ever, in their approaches, there is a bias in the statistics as
they simply sum the attention matrix to determine the im-
portance of each key. This strategy introduces a statistical
bias where earlier queries receive more cumulative scores
compared to newer queries. This bias can have a substan-
tial impact on the performance of the model. Furthermore,
during the score accumulation process, earlier query scores
dominate, causing the model to prioritize global informa-
tion over local information. As a consequence, specific de-
tails may receive insufficient attention, while computational
overhead increases.

Motivated by the above observations, we propose mod-
ified attention score matrix to correct statistical bias and
employ a forgetting factor to concentrate on local proper-
ties. Specifically, concerning the adjustment of the attention
score matrix, as illustrated in section 3, with an increasing
number of queries, each individual score should decrease
proportionally, while their cumulative sum remains fixed at
1. Through this, we successfully mitigate the statistical bias
that can occur during the estimation of importance scores.
As for the forgetting factor, we apply a window mechanism,
wherein only the last few rows of attention scores are consid-
ered for accumulation. By this, we can effectively incorpo-
rate local properties while minimizing computational over-
head.We have also introduced a novel quantization method
that dynamically adjusts the quantization precision based on
the correlation between the key (K) and value (V) vectors

with the query (Q). Keys highly correlated with the query
are quantized with high precision, while less relevant or ir-
relevant keys are compressed with lower resolution. This
flexible quantization process is expected to enhance the effi-
ciency of the KV cache in large models.

Problem Description and Related Work
This paper explore the memory implications of the LLM at-
tention procedure, particularly emphasizing the storage as-
pects of the key-value pairs in attention. Assume a model
with hidden dimension represented as d. Let b be the batch
size, and s indicate the length of input prompt sentences.

For the model parameters, we use W i
K ∈ Rd×d and

W i
V ∈ Rd×d as the key and value projection matrices for

the ith layer, respectively.
The LLM attention process involves an initial phase

where the model accepts the prompt sentences. The key and
value embeddings in the attention mechanism are cached
to minimize repeated computations. For the input at the
ith transformer layer, we can express it as: Xprompt =
[x1

prompt, . . . , x
s
prompt] ∈ Rb×s×d. The corresponding key

and value caches are given by Ki = XpromptW
i
K and V i =

XpromptW
i
V As the model moves to the generation phase, it

utilizes the cached key-value pairs from the prompting phase
and produces one token at each step. For every iteration
t in the ith transformer layer, the attention input modifies
the cache as follows: xi

t ∈ Rb×1×d, Ki
t+1 = [Ki

t , x
i
tW

i
K ],

V i
t+1 = [V i

t , x
i
tW

i
V ] (Liu et al. 2023).

LLM Inference Memory Breakdown
In this section, we detail the memory usage distribution for
LLMs. The memory allocation is divided into three compo-
nents: model weights, KV cache, and the activation buffer
(Liu et al. 2023). The model weights’ size varies based on
model settings like the count of transformer layers and the
hidden dimension. The KV cache’s size is influenced by
model parameters, sequence duration, and batch volume.
Meanwhile, the activation buffer’s size is determined by par-
allel tactics, model specifications, and the chosen implemen-
tation. Notably, the activation buffer occupies significantly
less memory compared to the other two components.

Efficient Attention
Attention mechanisms are at the core of LLMs, determining
how the model allocates attention and processes informa-
tion. Therefore, the design and implementation of efficient
attention mechanisms are crucial for enhancing inference ef-
ficiency.

Techniques such as quantization, pruning, and distilla-
tion are used to reduce the size and complexity of mod-
els, thereby lowering memory consumption and computa-
tional overhead. Quantization converts model weights from
floating-point numbers to lower-precision integer represen-
tations (Han, Mao, and Dally 2015). Pruning or sparsity
reduces model size by removing redundant components
(Molchanov et al. 2016). Distillation trains a smaller model
to mimic the behavior of a larger model, reducing memory



consumption and computational overhead (Hinton, Vinyals,
and Dean 2015). The methods discussed in this paper are
closely linked to sparsity, but primarily address the unique
challenge of KV cache in inference.

The quadratic complexity of attention modules is a key
constraint in transformer inference, as highlighted in (?).
Several strategies, including Reformer (Kitaev, Kaiser, and
Levskaya 2020), Performer (Choromanski et al. 2020),
Sparse Transformer (Child et al. 2019) and H2O (Zhang
et al. 2023) have emerged to tackle this issue. In this paper,
we use the most relevant studies that develop algorithms to
reduce the memory footprint of the KV cache as our baseline
references.

Quantization and Sparsification
Quantization(Krishnamoorthi) in Large Language Models
(LLMs) like ChatGPT is a process aimed at reducing the
precision of weights and activations in neural networks, en-
hancing computational efficiency and reducing memory us-
age. This is especially vital for deploying models in en-
vironments with limited resources, such as mobile devices
or edge computing platforms. Quantization Aware Training
(QAT) and Post Training Quantization (PTQ) are two pri-
mary methods used. QAT integrates quantization operations
into the neural network before training, but is less suitable
for LLMs due to the high costs and complexity of training
these models. PTQ, on the other hand, involves quantizing
the weights or both weights and activations after training,
without further training(Yao et al. 2022). In LLMs, quantiz-
ing both weights and activations simultaneously can lead to
significant performance degradation, making weights-only
quantization a more common approach.

Quantizing the Key-Value (KV) cache in LLMs, how-
ever, presents unique challenges. In text generation applica-
tions, key-value embeddings are calculated once and cached
for use in all subsequent queries. While a method similar
to weights-only quantization could be applied to the KV
cache, the dynamic nature of key-value embeddings and the
variability in output sequence lengths complicates the pro-
cess. The key difference lies in the fact that the informa-
tion needed for quantizing weights is inherent in the weights
themselves, whereas key-value embeddings are dynamically
calculated. This dynamic aspect makes it difficult to deter-
mine an appropriate dimension for splitting the KV cache
and to find suitable example inputs for fine-grained group-
wise quantization calibration offline, areas which are less ex-
plored and require innovative solutions.

Sparsification is another way to compressing the
KV cache besides quantization. Scissorhands(Liu et al.
2023)find that the attention maps with high scores are re-
peated. They compresses the KV cache by only saving the
key-value embeddings with high attention scores. Optimiz-
ing the model structure can also compress the KV cache.
Shazeer (Shazeer 2019)uses the multi-query attention to re-
place the multi-head attention to reduce the memory con-
sumption of the KV cache.

In our research, we make three significant contributions.
Firstly, we correct the bias in attention statistics. Secondly,
we introduce a forgetting factor to exclude the influence

Figure 2: Our method for correcting statistical bias involves
multiplying each element of the Attention matrix by a factor
i/(n − j + 1) to obtain the adjusted version. The adjusted
version ensures that the expected importance of each key,
after summation, is equal to 1.

of early queries on keys. Thirdly, We combine Quantiza-
tion and Sparsification, and perform tiered quantization on
Keys and Values based on their scores. Lastly, our experi-
ments demonstrate excellent performance improvements in
memory-efficient LLM inference.

Method
Similar to H2O (Zhang et al. 2023), we will employ atten-
tion scores as a metric to evaluate the significance of each
key. Our plan is to apply transformations to the attention
scores to mitigate any statistical bias. Moreover, we will dis-
cuss the importance of incorporating a forgetting factor into
the process.

Correcting Statistical Bias

In the task of next token prediction, a query at a specific po-
sition can only access the preceding keys. The i-th query can
only see the first i keys and calculate the dot product with
them, resulting in i attention scores. However, if we sum
the attention matrix column-wise, it will cause early queries
to accumulate a larger number of scores compared to new
queries. This leads to a statistical bias that can significantly
impact the model’s performance. The model tends to favor
retaining keys located earlier in the sequence because they
have accumulated higher scores.

Moreover, it is crucial to note that when conducting atten-
tion calculations between the i-th query and the preceding
i keys, we obtain i scores, and their summation amounts to
1. As a result, as i grows larger, each individual score di-
minishes proportionally. To illustrate, let’s consider the case
where i = 1, indicating the presence of just one token, re-
sulting in a score of 1. Nonetheless, as i increases, the scores
progressively decrease, ensuring that their cumulative sum
remains constant at 1.

Therefore, we propose a modification where we divide the
j-th column of the attention score matrix by the factor n −



j + 1 and multiply the i-th row by the factor i, resulting in

Scorei,j ←
i

n− j + 1
× Scorei,j (1)

The division of the j-th column by n − j + 1 is because
the j-th column accumulates a total of n − j + 1 scores.
We aim to mitigate the impact of different numbers of accu-
mulated scores for keys at different positions on statistical
importance.

And the multiplication of the i-th row by i is carried out
to ensure that the expected score for each key, as observed
by the query, is 1.

i× E[Scorei,:] = i×
[
1

i
,
1

i
, ...,

1

i

]
(2)

After the transformation, we derive new scores, and by
summing them column-wise, the i-th element of the result-
ing vector represents the importance score of the i-th key.
These scores have an expected value of 1 for each key. Con-
sequently, through this transformation, we successfully mit-
igate the statistical bias that can occur during the estimation
of importance scores.

Forgetting Factor
Text often demonstrates local dependencies, indicating that
the influence between two tokens diminishes as their dis-
tance increases. Hence, during the score accumulation pro-
cess, it is undesirable to include early query scores for each
key. Instead, we aim to focus solely on the scores from recent
queries in order to capture the most relevant information.
This concept can be realized by applying a window mecha-
nism, wherein only the last few rows of attention scores are
considered for accumulation. By adopting this approach, we
can effectively incorporate local properties while minimiz-
ing computational overhead.

Quantization Dropout
In the traditional attention mechanism of neural networks,
particularly transformer models, attention scores are com-
puted using the dot product of Query (Q) and Key (K) ma-
trices. These scores reflect the relevance of each element in
the input sequence, where higher scores denote stronger re-
lationships or greater relevance between the elements repre-
sented by the query and a particular key. After computing
these scores, they are normalized using a softmax function,
which converts them into probabilities. These probabilities
are then used to weight the Value (V) vectors, aggregat-
ing information from V based on the relevance indicated by
the QK scores. This process is central to determining which
parts of the input data the model should focus on. Due to
the normalization of Softmax, the quantization error of the
K cache has less influence on the output. (Zhao et al. 2023)

The concept of quantizing Key (K) and Value (V) vec-
tors based on their calculated relevance to the Query (Q) is
an innovative approach to optimize memory usage in neural
networks, as 3 shows. In this method, the most relevant keys
would be quantized with higher precision (e.g. 8 bits), while
less relevant or irrelevant keys would be compressed using

Figure 3: The mechanism of KV cache quantization dropout.

lower resolutions (e.g. 4bits). This implies a dynamic quan-
tization process, where the degree of quantization is deter-
mined by the attention scores. Similarly, this principle could
be extended to the V vectors, where the relevance of each
value, as derived from the QK calculations, would dictate the
level of precision in quantization. Such a method suggests a
more memory-efficient approach by dynamically allocating
different precision levels based on the relevance of each key
and value in the attention process, potentially enhancing the
efficiency of KV cache in large models.

Experitments
First, we will demonstrate how our approach can reduce the
KV cache size by up to 80% while maintaining model capac-
ity in llama-13B and llama-7B (Touvron et al. 2023). Next,
we will present ablation experiments to validate the effec-
tiveness of correcting biased statistics, the forgetting factor,
and quantization dropout.

End-to-End Results
In this section, we will use Huggingface’s Llama-13B and
Llama-7B models as baseline models. Building upon these
models, we will conduct experiments involving bias correc-
tion statistics, forgetting factor, and quantization dropout.

For our testing data platform, we will utilize LM Eval
Harness(Gao et al. 2021). This platform will be used
to evaluate the performance on datasets such as Open-
bookQA(Mihaylov et al. 2018), Winogrande(Sakaguchi
et al. 2021), and Wikitext2(Merity et al. 2016). We will mea-
sure the accuracy of the models for OpenbookQA and Wino-
grande, while for Wikitext2, we will assess the perplexity.

The OpenbookQA and Winogrande datasets will be eval-
uated based on their accuracy, indicating how well the mod-
els perform in answering questions. On the other hand, the
Wikitext2 dataset will be assessed using perplexity, which
measures the quality of language modeling by quantifying
how well the model predicts the next word in a sequence.

By incorporating bias correction statistics, forgetting fac-
tor, and quantization dropout techniques, we aim to enhance
the performance of the Llama-13B and Llama-7B models on
these evaluation tasks.

For quantization dropout, we adopted a scheme that com-
bines high-precision bits with low-precision bits. The KV



Figure 4: We conducted accuracy tests on OpenbookQA and Winogrande, as well as perplexity tests on Wikitext2, using the
Llama-13B and Llama-7B models. The results are represented by the blue line for our approach and the orange line for token
pruning methods, with H2O as a representative.



Compress Ratio Quantization Schemes
0.1 20% 4bit + 80% 1bit
0.2 60% 4bit + 40% 2bit
0.4 60% 8bit + 40% 4bit
0.6 80% 8bit + 20% 4bit
0.8 60% 16bit + 40% 8bit

Table 1: The quantization schemes used for different com-
pression rates.

cache of important tokens was quantized with high pre-
cision, while the KV cache of non-important tokens was
quantized with low precision. The compression rate was
controlled by adjusting the ratio between high-precision
and low-precision bits. 1 illustrates the specific quantization
schemes for each compression rate.

As shown in Figure 4, our approach can maintain perfor-
mance when the compression rate reaches around 0.1 across
all datasets. In contrast, H2O exhibits a significant decline
in performance at a compression rate of 0.1.

Ablation Results
In this section, we will conduct separate tests to evaluate the
effectiveness of statistical bias correction and quantization
dropout. This will allow us to clearly and comprehensively
assess their impact and performance.

Correcting Statistical Bias Ablation Results In this sec-
tion, we employ the Llama-13B model as our baseline, along
with all our proposed methods. We evaluate the effectiveness
of correcting statistical bias by incorporating a forgetting
factor. We conduct these evaluations using the OpenbookQA
and Wikitext2 datasets. The goal is to assess the impact and
effectiveness of our approach in mitigating statistical bias in
the models’ predictions.

In the ablation experiment results, we can observe that as
the compression ratio decreases, the advantages of employ-
ing statistical bias correction become more apparent. It plays
a crucial role in capturing which tokens are more important
and which ones are less important. In comparison, methods
like H2O utilize a local budget approach, where a certain
number of recent tokens are always retained. On the other
hand, our quantization dropout method achieves excellent
results without relying on such local budget tricks.

Quantization Dropout Ablation Results In this section,
we continue to use the Llama-13B model as our baseline
with all our proposed methods. The ”w.o.” model, on the
other hand, excludes the quantization dropout technique. In-
stead, it retains all tokens within the compression ratio with
their original precision, while pruning off non-important to-
kens outside the compression ratio. Essentially, the ”w.o.”
model is an extension of the H2O approach, incorporating
statistical bias correction and a forgetting factor.

From the experimental results, we can observe that as the
compression ratio gradually decreases, there is initially min-
imal decrease in accuracy compared to the baseline model.
It is only when the compression ratio reaches 0.2 or below

that the quantization dropout method starts to demonstrate
its effectiveness. This implies that when the compression ra-
tio becomes too low, it is no longer possible to retain all
the crucial tokens, resulting in a decline in accuracy. How-
ever, the proposed method in this paper addresses this issue
through soft pruning, ensuring that all tokens are preserved.
The key tokens are retained with high precision, while non-
key tokens are retained with lower precision.

Thus, it is evident that the quantization dropout method
plays a crucial role in further reducing the compression ratio.

Summary
This paper addresses the issue of memory consumption in
key-value (KV) caches during language model inference.
A pruning approach is proposed to reduce the KV cache
size by evaluating the importance of keys using attention
scores. Statistical bias is corrected, a forgetting factor is in-
troduced, and an innovative quantization method is adopted.
The method is demonstrated in experiments to reduce the
KV cache size by up to 80% in llama-13B and llama-
7B models while maintaining model capacity. Performance
evaluation using LM Eval Harness validates the effective-
ness on datasets such as OpenbookQA, Winogrande, and
Wikitext2. The introduced quantization dropout method dy-
namically adjusts precision based on relevance, maintaining
performance and improving KV cache efficiency. Ablation
experiment results highlight the impact of statistical bias
correction on model predictions. The quantization dropout
method effectively preserves model accuracy during com-
pression ratios reduction through soft pruning. Overall, these
improvements aim to optimize KV cache memory utiliza-
tion, enhancing the overall performance of language models.
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