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Abstract

Multi-View Stereo (MVS) reconstruction is a technique in
3D modeling, which has garnered attention in various ap-
plications, from autonomous navigation to augmented real-
ity and city planning. Traditional MVS methods face limi-
tations in handling challenging scenes, while deep learning-
based approaches like MVSNet have shown promise. Based
on MVSNet, this study proposes the integration of the Con-
volutional Block Attention Module (CBAM) for cost volume
regularization to enhance feature expression and introduces
Squeeze-and-Excitation (SE) to enhance the network’s abil-
ity to evaluate the importance of features and capture details.
The method is evaluated using the DTU dataset, demonstrat-
ing its potential for enhanced 3D reconstruction performance.

Introduction

Multi-view stereo reconstruction, also known as MVS re-
construction, is a popular approach in 3D reconstruction
that aims to reconstruct three-dimensional models of a scene
based on a series of images captured from multiple view-
points. This method is widely utilized in various domains
such as autonomous driving, augmented reality, cultural her-
itage preservation, and smart cities. Compared to active 3D
reconstruction methods that rely on devices like laser scan-
ners and depth cameras, MVS as a passive image-based 3D
reconstruction technique, offers several advantages, includ-
ing high reconstruction accuracy, a wide field of view, low
cost, and ease of widespread application.

Traditional MVS methods (Hirschmuller 2007; Furukawa
and Ponce 2009; Schonberger and Frahm 2016) use hand-
crafted similarity metrics and regularizations to compute
dense correspondences and recover 3D points. Although
these methods have demonstrated great performance in ideal
Lambertian conditions, they suffer from certain limitation.
For example, low-textured, specular and reflective regions
of the scene may make dense matching intractable, which
leads to incomplete reconstructions.

Recent achievements in Deep Learning have sparked in-
terest in improving MVS reconstruction as well. Compared
with traditional methods, point clouds generated from multi
view 3D reconstruction based on deep learning are more
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accurate and complete. Yao et al. (2018)proposed a deep
learning-based stereo vision network called Multi-View
Stereo Network (MVSNet). It decouples the problem of re-
constructing a 3D scene by constructing a three-dimensional
cost volume on the reference view and solving it as a single-
view depth estimation task. Luo et al. (2019) introduced the
Point Multi-View Stereo Network (Point-MVSNet), which
is based on cost volumes by accumulating matching confi-
dences. Yu et al. (2020) presented a new Fast Multi-View
Stereo Network (Fast-MVSNet) that progresses from sparse
to dense and from coarse to fine for rapid 3D reconstruction.
Current state-of-the-art MVS reconstruction methods based
on deep learning have demonstrated excellent performance
(Sun et al. 2021; Zhang et al. 2023; Gu et al. 2020). They
compute different resolution depth maps in a coarse-to-fine
process and progressively narrow hypothesis plane guidance
to reduce computational expense.

MVSNet propose an end-to-end deep learning architec-
ture for depth map inference, which computes one depth
map at each time. However, there is still room for improve-
ment in MVSNet performance because it neglects the fea-
ture extract process of both 2D images and 3D cost volume
regularization in which contains rich information. In this
work, we propose a multi-view 3D reconstruction method
based on MVSNet, which aims at improving accuracy in
depth estimation and multi-view 3D reconstruction.

We have introduced the CBAM (Woo et al. 2018b) on the
basis of MVSNet, extending the CBAM module to the ex-
traction of three-dimensional features. CBAM applies atten-
tion based functional refinement through two different mod-
ules (channel and space), achieving significant performance
improvements while maintaining minimal overhead, dynam-
ically adjusting the weights of channel and spatial feature
volume. Meanwhile, the SE attention module (Hu, Shen,
and Sun 2018) is also embedded in the feature extraction
network of MVSNet. SE helps networks better focus on im-
portant functional channels and extract more effective fea-
tures. Through these steps, the accuracy and completeness
of 3D reconstruction have been improved. The experiment
using DTU dataset (Jensen et al. 2014) shows that this model
achieves higher integrity and smoothness in 3D point cloud
reconstruction compared with MVSNet, and its performance
is also improved.

In summary, the main contributions are as follows.



* By applying CBAM attention mechanism in both channel
and spatial dimensions, more effective feature extraction
can be achieved, resulting in more accurate and detailed
3D reconstruction.

* SE module’s ability to adaptively recalibrate channel-
wise feature responses enhances the network’s focus on
relevant features, improving the overall quality and fi-
delity of the reconstructed 3D models.

* The proposed method achieved better performance com-
pared to MVSNet when evaluated on DTU dataset.

Related works
Traditional MVS Methods

Traditional MVS methods which represent the 3D geome-
try of objects or scene using voxels (De Bonet and Viola
1999; Sinha, Mordohai, and Pollefeys 2007), point cloud
(Lhuillier and Quan 2005; Furukawa and Ponce 2009),
meshes(Esteban and Schmitt 2004; Fua and Leclerc 1995)
and depth maps(Tola, Strecha, and Fua 2012; Galliani,
Lasinger, and Schindler 2015).

In the following, we mainly discuss about voxel-based
MYVS and depth maps-based MV S methods which have been
integrated to learning-based framework recently. Voxel-
based methods have the capability to represent a wide range
of objects and scenes. These techniques do not impose con-
straints on the shape of the objects, but they require a signif-
icant amount of memory due to the discretization of space.

Comparatively, depth map-based methods are more con-
cise and flexible. Galliani et al. (2015) present Gipuma,
a massively parallel multi-view extension of Patchmatch
stereo. It uses a red-black checkerboard pattern to paral-
lelize message-passing during propagation. Sch”onberger et
al. (2016) present COLMAP, which jointly estimates pixel-
wise view selection, depth map and surface normal.

Learning-based MVS Methods

Existing Learning-based MVS Methods can mainly be di-
vided into two categories: voxel-based MVS (Sun et al.
2021; Ji et al. 2017) and depth maps-based MVS (Yao et al.
2018a; Zhang et al. 2023; Gu et al. 2020; Yang et al. 2020).
Depth map-based methods such as MVSNet (Yao et al.
2018a) constructs the cost volume by aggregating deep fea-
tures and camera parameters, and uses 3D CNN for regular-
ization. And to reduce memory consumption and run-time,
several subsequent studies have been developed (Zhang et al.
2023; Gu et al. 2020; Yang et al. 2020), which adopt cascade
cost volumes or cost volume pyramid to estimate depth maps
in a coarse-to-fine manner. To explicitly integrate geometric
clues implied in coarse stages for delicate depth estimation,
Zhang (2023) proposed a geometry awareness model termed
GeoMVSNet, which achieves the state-of-the-art in Multi-
view 3D reconstruction. Voxel-based method (Sun et al.
2021; Ji et al. 2017) uses a trained network to regress the
occupancy rate of each voxel, but the volume representation
method incurs significant memory consumption.

Method

Squeeze-and-Excitation Networks

Squeeze-and-Excitation Networks(SE Networks) adaptively
recalibrates channel-wise feature responses by explicitly
modelling interdependencies between channels.

The structure of the SE building block is depicted in Fig-
ure 1. For any given transformation Ftr mapping the input

X to the feature maps U where U € RHXWxCRH W *¢
,e.2. a convolution, we can construct a corresponding SE
block to perform feature recalibration. The features U are
first passed through a squeeze operation, which produces a
channel descriptor by aggregating feature maps across their
spatial dimensions (H x W). The function of this descrip-
tor is to produce an embedding of the global distribution of
channel-wise feature responses, allowing information from
the global receptive field of the network to be used by all
its layers. The aggregation is followed by an excitation op-
eration, which takes the form of a simple self-gating mech-
anism that takes the embedding as input and produces a col-
lection of per-channel modulation weights. These weights
are applied to the feature maps U to generate the output of
the SE block which can be fed directly into subsequent lay-
ers of the network.
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Figure 1: A Squeeze-and-Excitation block.

A Squeeze-and-Excitation block is a computational unit
which can be built upon a transformation F}, mapping an

inputX e R *W'xC'to feature maps U € RE*WxC In
the notation that follows we take Fi, to be a convolutional
operator and use V=[vl, v2,..., vC ] to denote the learned
set of filter kernels, where vc refers to the parameters of the

c-th filter. We can then write the outputs as U = [ul, u2,

c
.,uC ], where u, = v, * X = > | v % x°. Here

denotes convolution, ve = [VL, V2, V"] X =[2,22,....2¢]
and u, € RT*W.y% is a 2D spatial kernel representing a
single channel of vc that acts on the corresponding channel
of X. To simplify the notation, bias terms are omitted. Since
the output is produced by a summation through all channels,
channel dependencies are implicitly embedded in v.,but are
entangled with the local spatial correlation captured by the
filters.

3D convolutional block attention module

Convolutional Block Attention Module (CBAM),a simple
yet effective attention module for feed-forward convolu-
tional neural networks.Different aspect of 2D convolutional
network is that 3D convolutional network has one more deep
dimension, The specific integration mode is shown in Fig-
ure Figure 2.When extracting spatial and spatial features,
the variation in depth parameters need to be taken into ac-
count. For an intermediate 3D convolutional layer: F3p €



RWxHXDxC 3 CBAM will deduce the channel attention
feature map in order: M.3p € R 11X and the spatial at-
tention features of , Fig: My3p € RYHXWXD the whole
process formula is shown as follows:

Fyp = M,,,,(F3p) ® Fip.
?ﬁ) = MSBD (F?/;D) Y FéD

The channel attention module of 3D-CBAM focuses on
which channels serve the final classification result of the
fused 3D network, i. e., selecting the features that are de-
cisive for the prediction, and the specific steps are shown
in Figure 3. First, the input feature diagram Fsp through
the maximum pooling and mean pooling based on width W,
depth H and depth D, and then through the features of the
MLP, and then activate the generated channel feature dia-
gram Mcsp(F3p)and the input feature diagram F3p to gen-
erate the final channel feature diagram F35p, formula:

ey

M

€30

(Fgg) = O'(MIP(AVgPOOl3D(F30))
+ MIP(MaxPool3D(F3p))) 2)
= o(Wi(Wo(Forp)) + Wi(Wo(Fox)))
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Figure 2: The structure of 3D-CBAM.
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Figure 3: Channel attention module of 3D-CBAM.

Where V, € RY/"™<C WEXC/T 5 is the sigmoid opera-
tion, and Wy needs to be activated by the Relu function. In
this paper, the value of the reduction rate r is 8, that is, the
channel C is transformed to C / 8 when the maximum pool
and the mean pool are transformed, the number of parame-
ters is reduced, and finally the full connection is transformed
to the original channel C.

The spatial attention model of 3D-CBAM focuses on
which pixels in the RGB image play a decisive role in the
prediction of the network, and the specific attention fea-
ture extraction process is shown in Figure 4. First, the fea-
ture map F, of the channel attention module was taken as
the input feature map of the spatial attention module, Do a

( Spatial Attention Module )
Conv
laye
—> B -> @ -

Channel-feature [MaxPool3D, Spatial Attention
Fy AvgPool3D] M, )

.

Figure 4: Spatial attention module of 3D CBAM.

channel-based maximum pooling and mean pooling opera-
tion, Both the extracted features Fy,, and Fy . are then
subjected to the channel-based merging operation, Then, a
convolution operation of 77 reduces its dimension into a
channel and then goes through the sigmoid activation func-
tion to generate the spatial attention feature map, Finally, use
the feature map and F}, of the module to multiply the final

generated feature Fj',,The formula is given as follows:

M

$30

(Fj) = o7 ([AvgPool3D(F}); MaxPool3D(Fiy)]))
= ([T ([Fiugi Firan)) 3)

It is proved that the convolution operation of 77 is better
than the convolution of 33. Because it is applied to 3D con-
volution and the channel sorting format of video sequence
frames is channel-last, it is necessary to string the channels
of axis = 4 in the tensor during the merging operation, and
then conduct the convolution operation to ensure that the
number of features of the axis =4 is 1.

Proposed Solution

MVSNet is a deep learning architecture designed for infer-
ring depth maps from multi-view images. It operates by ini-
tially extracting intricate visual features from images, then
generating a 3D cost volume based on a reference camera
frustum through differentiable homography warping.A dis-
tinguishing feature is its adaptability to arbitrary N-view in-
puts via a variance-based cost metric, consolidating multiple
features into a single cost feature. Then, an initial depth map
can be regressed by utilizing 3D convolutions, which is sub-
sequently refined by the reference image to produce the final
output.

However, acknowledging potential limitations in feature
extraction, a proposed enhancement involves incorporating
a squeeze-and-excitation (SE) module to dynamically ad-
just feature map channel weights, aiming to improve the net
work’s adaptability and performance in capturing more rel-
evant features. Besides,the 3D cost volume regression part
applies the 3D-CBAM module to effectively extract com-
plex 3D features. The full architecture of proposed method
is shown in Figure 5.

Cost Volume MV SNet constructs a 3D cost volume utiliz-
ing extracted feature maps and input camera data. Denoting

the reference image as Iy, source image as{I;}}¥.; from 2 to
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Figure 5: The overview of the proposed network.

N, and the corresponding camera intrinsics, rotations, and
translations as {K;, R;,t;}}\, for each feature map. The
network employs a differentiable homography to warp fea-
ture maps into frontoparallel planes aligned with the refer-
ence camera, as shown in (1):

T
H;(d) = K; R, (I - (tltd)nl> RITKY. @
H;(d) denotes the homography matrix between the i-th
feature map and the reference feature map at depth d. The
matrix is represented as a 3 x 3 matrix, where 'n;’ signifies
the principal axis of the reference camera, facilitating the
coordinate mapping.

The warping process, serving as a pivotal step in connect-
ing 2D feature extraction to 3D regularization networks, is
executed in a differentiable manner, facilitating the end-to-
end training of depth map inference.

The aggregation of multiple feature volumes {V;}¥
into a single cost volume C follows the proposal of a
variance-based cost metric M, facilitating N-view similarity
measurement. The metric accounts for the input image di-
mensions (W, H), depth sample number (D), and feature map
channel count (F) to define a mapping : RV x --- x RV —

————

N
RV, as shown in (2):

SN (Vi = V)
N

C=M(Vy,-,Vy) = )

Here, V; denotes the average volume among all feature
volumes, and the operations are performed element-wise.
This metric design is rooted in the idea that each view should
contribute equally to the matching cost without favoring the
reference image. Diverging from prior work’s mean opera-
tion[11 et al.], MVSNet adopts a ’variance’ operation, offer-
ing explicit measurement of multi-view feature differences.

Additionally, recognizing the challenge in extracting in-
tricate 3D features efficiently, the cost regularization net-
work incorporates a convolutional block attention module
(CBAM) adapted for three-dimensional feature extraction.
This CBAM dynamically adjusts the weighting of feature
quantities across both channel and spatial dimensions, en-
hancing the network’s ability to capture complex features
effectively.

Depth Map Rather than using a pixel-wise winner-take-
all (argmax) approach[5 et al.], MVSNet computes the ex-
pectation value across depth dimensions using a probability
weighted sum over all hypotheses, as shown in (3):

dmax

D= Z d x P(d) (6)

d=dmin

P(d) is the probability estimation for all pixels at depth d.
This operation, known as the soft argmin[17 et al.], enables
continuous depth estimation and differentiability for train-
ing.

Despite the 3D CNN’s strong regularization abilities, for
inaccurately matched pixels, the probability distributions
tend to scatter, preventing concentration into a single peak.
To measure estimation quality, the method defines it as the
probability that the ground truth depth falls within a small
range near the estimation. By summing probabilities over
the nearest depth hypotheses, this approach evaluates esti-
mation quality, emphasizing outliers’ thresholding control
for better depth map filtering.

Leveraging the reference image’s boundary information,
MV SNet utilizes a depth residual learning network inspired
by image matting algorithms[37 et al.]. This network incor-
porates the initial depth map and a resized reference im-
age as a 4-channel input, processing it through convolu-
tional layers to learn depth residuals. The refined depth map
emerges after adding the learned depth residuals back to the
initial depth map.



Loss Our training loss is determined by the mean absolute
difference calculated between the estimated depth map and
the ground truth depth map. We only consider those pixels
with valid ground truth labels:

Loss= > |d(p) = di(p)| +A- |d(p) — d(p)llx (7)

PEPvalid

Loss0 Lossl

Where p,q1:4 denotes the set of valid ground truth pixels,

d(p) the ground truth depth value of pixel p, d;(p) the initial
depth estimation, d;(p) the refined depth estimation.

Experiments
DTU Dataset

The DTU dataset (Jensen et al. 2014) is a large-scale dataset
widely used for deep learning in 3D reconstruction and
multi-view stereo reconstruction. It comprises multi-view
image sequences and corresponding accurate 3D point cloud
models for 128 indoor scenes. Each scene is captured using
a fixed camera from 49 viewpoints under 7 different light-
ing conditions, resulting in RGB images with a resolution
of 1200x1600 pixels. The camera viewpoints for all scenes
in the DTU dataset surround the objects, sampled at fixed
angular intervals, ensuring sufficient overlap in the acquired
images for reconstruction.

Implementation Details In experiments, the DTU dataset
is partitioned into training, validation, and test sets following
the dataset division method of MVSNet(Yao et al. 2018b).

Training The depth sampling range for the experiment is
425mm 935mm and sampling frequency is set to 192 which
indicates that each depth assumption represents 2.67mm.
During the training phase, the input of the model is the 640
x 512 resolution images from DTU dataset, including one
reference image and five source images(N=5) with the cor-
responding camera parameters.We use PyTorch for imple-
mentation and train the model with the Adam(Kingma and
Ba 2014) optimizer for 20 epochs from a start learning rate
of 0.001 on NVIDIA 4070 GPU, and the learning rate is di-
vided by 2 at the 10th, 13th, and 16th epoch during training.

Evaluation We used images of the original resolution size
and crop the images to 1600 x 1152 for the DTU evalua-
tion. Other settings are consistent with the training process.
Our model consumes 0.75s and 11.5G memory for the full-
resolution DTU depth estimation. As for depth fusion, we us
the fusion algorithm(Merrell et al. 2007) to integrate depth
maps from different views to a unified point cloud represen-
tation.

Metrics

For point cloud evaluation, we follow the standard evalua-
tion protocol as in MVSNet(Yao et al. 2018b). The accuracy,
completeness and overall score of the reconstructed point
clouds are adopted.

Accuracy Accuracy is measured as the distance from es-
timated point clouds to the ground truth ones in millimeter,
which can be computed as:

1 . 9
Acc = S E min||x — y||
| 1|XES1
YES,

1 .
=Sl > min(|x —y]?)

XES1
YES,

®)

Where S; represents the set of all spatial points in the
reconstructed 3D point cloud, So represents the set of all
spatial points in the ground truth point cloud.

Completeness Completeness is defined as the distance
from ground truth point clouds to the estimated ones, which
can be computed as:

1
Comp = — Z min||y — x|
|Sl|x€Sl
YES,

1 .
= m Z min(||y — X||2)

XES
YES,

€))

Overall Score The overall score is the average of accu-
racy and completeness, which is taken as the comprehensive
evaluation metric.It can be computed as:

Acc + Comp
2

Performance on DTU Dataset The qualitative results are
shown in Figure 6 and Figure 7. As shown in Figure 6, our
proposed methods successfully predicts the depth map of the
scans and filters the generated depth map through a probabil-
ity map mask. Proposed method captures more details of the
scenes and estimates the depth map significantly accurate,
complete and smooth.

After fusing depth maps of different viewpoints to gen-
erate 3D point clouds, we use MeshLab to visualize the
3D models. As shown in Figure 7, we compare our results
with baseline method MVSNet(Yao et al. 2018b). The 3D
point clouds generated by our method is more complete, es-
pecially for the geometry structures of the subject. Mean-
while, the good performance on scans with drastic illumi-
nation changes and reflections also proves the robustness of
our method.

For quantitative evaluation, we report accuracy, complete-
ness and overall score by using official MATLAB codes
(Jensen et al. 2014) as shown in table 1. Our approach out-
performs the baseline method MVSNet in completeness and
raises the accuracy metrics to a new altitude.

Overall = (10)

Ablation Studies

To verify the effectiveness of the introduced SE(Hu, Shen,
and Sun 2018) and 3D-CBAM(Woo et al. 2018a) modules,
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Table 1: Quantitative comparison of our method and MVS-
Net(D=192) on DTU dataset

Method  Acc(mm) Comp (mm) Overall (mm)
MYVSNet 0.449 0.379 0.414
Ours 0.393 0.371 0.382

we first build a baseline model MVSNet with the depth hy-
potheses of 192 layer. Then, the SE and 3D-CBAM modules
are added one by one.

The squeeze and excitation mechanism allows the model
to pay more attention to the features of important channels
and to extract rich 2D image features. As shown in table
2, the introduction of SE module has improved the accu-
racy and overall score of the model. The 3D-CBAM mod-
ule also has a greater improvement on the model’s perfor-
mance because it has a stronger ability to extracts com-
plex 3D features by selectively emphasizing relevant spatial
and channel-wise information through its Channel Attention
Module (CAM) and Spatial Attention Module (SAM).

Table 2: Ablation study on the DTU dataset. Components
are added one by one in the upper part.

Method Acc(mm) Comp (mm) Overall (mm)
Baseline 0.449 0.379 0.414
+SE 0.426 0.382 0.404
+3D-CBAM 0.393 0.371 0.382

In conclusion, both SE and CBAM modules contribute to
the improvement of model performance. They enable the
model to extract more comprehensive geometric informa-
tion, resulting in a more complete reconstruction of the 3D
point cloud.

Conclusion

In this paper, we propose an learning based end-to-end
multi-view depth estimation architecture for 3D reconstruc-
tion. Specifically, we introduce the SE module into the fea-
ture extraction network of MVSNet to adaptively adjusting
the channel weights of the feature map and achieving more
effective feature extraction. In addition, to bridges the 2D
feature extraction and 3D cost regularization,we encode the
camera parameters as the differentiable homography to build
the cost volume upon the reference camera frustum. Due to
the original MVSNet is difficult to extract rich and com-
plex 3D features in the cost volume, in cost regularization
network, we extend the application of the CBAM module
to 3D feature extraction, which can dynamically adjusts the
weights of the feature volume in both channel and spatial
dimensions. It has been demonstrated on DTU dataset that
our model can reconstruct more complete and smoother 3D
point cloud and achieves better performance than MVSNet.
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