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Abstract

In recent years, with the increase of ocean data, its data
scale can reach PB level. How to compress and transmit data
quickly and with high quality has attracted more and more
attention. Existing lossy or lossless compression algorithms
can have good effects, but algorithms that combine with phys-
ical mechanisms in the ocean are rare. At the same time, with
the rapid development of deep learning, its applications in
various fields have significant effects. This topic aims to ex-
plore the data compression algorithm that combines physical
mechanisms and deep learning methods, and compress and
decompress ocean data quickly and with high quality.

1 Introduction
Neural image compression algorithms have made great
progress in recent years. Compared with traditional lossy
compression algorithms such as JPEG or JPEG2000, deep
learning-based algorithms not only have a great improve-
ment in compression rate, but also have strong performance
in distortion rate(He et al. 2022a; Jamil et al. 2023). How-
ever, most of the algorithms are still based on data-driven
mode, learning the spatial features of images, and quantiz-
ing and entropy coding the feature maps to achieve the pur-
pose of compressing data. At the same time, with the in-
creasing amount of ocean surface data in recent years, its
high-resolution ocean current data, sea surface temperature
data, salinity data can reach PB order of magnitude. How
to effectively compress ocean data has also become a con-
cern(Wang, Zhou, and Zhou 2023).

Different from the data-driven image compression mode,
1) ocean data has related physical constraints prior knowl-
edge; 2) ocean data has four dimensions including longitude,
latitude, depth and time, and it has been shown that adding
physical knowledge as prior knowledge into the model can
make model more stable and accuracy(Erichson, Muehle-
bach, and Mahoney 2019). How to add prior knowledge
from Ocean science to the model to make the it more stable
and reliable has also become a popular direction for the ap-
plication of AI in the field of natural sciences(Campin et al.
2011).

The problem we are studying is whether we can use the
physical constraints in ocean research, and use deep learning
methods to propose an effective compression algorithm for
ocean data, such as shown in Figure 1, which can compress

Figure 1: Ocean Data, The South Sea of China

ocean data more efficiently and with high quality, quickly
transfer, and improve the efficiency and quality of ocean re-
searchers to obtain and transmit data.

2 Related Work
Image compression algorithm. A compression algorithm
based on spatial channels has been proposed(He et al.
2022a), and it has good spatial channel information cap-
ture ability and good compression quality and speed. The
authors proposed a compression method based on model
parameters(Dupont et al. 2022), using the fitted model pa-
rameters and the trained offset vector to represent the im-
age information. (Ballé, Laparra, and Simoncelli 2016) pro-



posed to use AutoEncoder for image compression, and pro-
posed the GDN normalization method and the model-based
compression data quantization method, which have a signif-
icant improvement in data effect compared with JPEG and
JPEG2000. (Zhang, Xu, and Yang 2022) proposes an image
compression model based on Conditional Generative Adver-
sarial Networks (HPIC) and an overprior probability model
is first used to encode and quantize the original image in
this model.(Zhu, Li, and Zhang 2022) introduces an inno-
vative multi-source data preprocessing method, which uni-
formly converts the DN value of multispectral images into
reflectivity and get a notable improvement in the quality of
reconstructed images. The multispectral image compression
framework utilizes 1 * 1 convolution to reduce inter-spectral
redundancy, self-encoder to reduce image dimension, Gaus-
sian mixture entropy coding to estimate the code rate, and
rate-distortion optimization to jointly optimize the code rate
and distortion.

Masked autoencoders introduce a masking techniques,
encouraging the model to focus on key image features, effi-
ciently capturing image structural information and improv-
ing compression-decompression quality (He et al. 2022b).
Furthermore, masked autoencoders exhibit scalability, suit-
able for large-scale image datasets, and offer flexibility
in the masking process, allowing adjustments for different
compression settings, enhancing the method’s versatility and
it has been shown that masked autoencoder has great ad-
vancements in the field of image decompression. Recep-
tance Weighted Key Value (RWKV) is a novel model intro-
duced in 2023(Peng et al. 2023), aimed at addressing the
challenges associated with handling long sequences. This
model combines the efficient training methods of Trans-
formers with the efficient inference process of RNNs, lever-
aging a linear attention mechanism for model construction.
Empirical results have demonstrated that RWKV can per-
form on par with similarly sized Transformers, while ex-
hibiting linear memory and computational requirements(Bo
Peng, and Eric Alcaide 2023).

Compression algorithm with natural science. As in
(Wang, Zhou, and Zhou 2023), a matrix compression algo-
rithm based on SVD was used, and experiments were car-
ried out based on the data of Yangtze River Delta in China
and HYCOM high-resolution ocean data, and achieved good
results, but its calculation method was more complex. The
authors proposed to use video compression method(Berres
et al. 2017) to compress ocean database data, based on tem-
poral dimension t, and apply video compression technol-
ogy to compress temporal group images. (Tarasiou, Chavez,
and Zafeiriou 2023) used the ViT model based on Trans-
former structure to process high-resolution temporal satellite
remote sensing images.

Algorithm combining physical knowledge. (Thuerey
et al. 2021) provided a deep learning method based on physi-
cal framework and its application. (Campin et al. 2011) also
provided a method of adding physical constraints into the
model for training, transforming physical constraints into
part of the loss function and adding them into the model
training, so that the model can learn the knowledge of physi-
cal constraints. (Erichson, Muehlebach, and Mahoney 2019)

Based on AutoEncoder framework and added Lyapunov
condition to enhance the robustness of the model in pre-
diction, and used Gulf of Mexico sea surface data to ver-
ify the model effect. The method of combining physical
prior knowledge and deep learning image compression al-
gorithm has not been searched for temporarily, and plans to
further conduct literature research in the future. (Fang 2022)
provides us with an approach in which a hybrid physics-
informed neural network for partial differential equations
(PDEs) is proposed, drawing inspiration from convolutional
neural networks and finite volume methods. It employs an
approximation of the differential operator to solve PDEs,
which has been proven to have a convergent rate. This
method can be adapted for solving PDEs in ocean data, im-
proving the accuracy of compression algorithms.

(Wang et al. 2023) model the learning and decision-
making process of CNN with a statistical physical perco-
lation model. Based on the differentiation degree and vul-
nerability of percolation. Propose the concept of CNN dif-
ferentiation degree and summarize the empirical formula
to quantify it. The relationship between the differentiation
degree and vulnerability is analyzed from both adversarial
attack and adversarial training perspectives to explain the
decision-making mechanism of CNN and classification re-
liability.(de Haan et al. 2020)By adding a variety of physi-
cal constraints in the optimization process, better image re-
construction results can be achieved. Image Reconstruction
and Enhancement Based on Deep Learning This paper pro-
vides an overview of efforts in the field of computational
microscopy and optical sensing systems using deep neural
network propulsion microscopy. Deep learning has proven
to be one of the leading machine learning techniques for a
variety of inference tasks.

Figure 2: Model Structure

3 Proposed Solution
In this section, we will introduce our solution in three parts.
First we will show our basic temporal model structure for
image compression as Figure 2. Then we will introduce gen-
eralized divisive normalization(GDN). Finally we will intro-
duce the NS equation and how do we imply it into our loss
function.



Temporal Model
Most ocean data compression methods are focusing on sin-
gular snapshot(Jamil et al. 2023; Momenifar et al. 2022;
Glaws, King, and Sprague 2020). Although these methods
outperform than the original methods such as SVD and
JPEG, they do not take fully advantage of the information in
time dimension. In order to get more features in time dimen-
sion, we use 3D convolutional network to extract the time
information. Inspired by the breakthroughs in deep learning
in the field of imaging, rapid progress has been made in fea-
ture learning in recent years. Various pre-trained convolu-
tional network (ConvNets) models are available for extract-
ing image features. To delve further into research, we have
adopted deep 3D ConvNet(Tran et al. 2015), which excels
in processing video data, to learn spatio-temporal features.

However, one limitation of C3D is that, although it is
based on 3D convolution, its feature extraction capability is
severely constrained by computation and parameter quan-
tity. The C3D model has only 11 layers but a model size
of 321M. In contrast, the deeper resnet-152 network is only
235M in size. This limitation affects not only the feature
extraction capability of C3D but also the training scope of
3D networks. Therefore, we adopted the P3D (Pseudo-3D
Residual Networks) convolutional network to enhance the
performance of model training. P3D draws from the concept
of asymmetric convolution proposed in InceptionNets, de-
composing a k×k×k 3D convolution into a 1×k×k convolu-
tion for extracting spatial features and a k×1×1 convolution
for merging temporal features, and integrating these two de-
composed convolutions in a p3d block. P3D not only signif-
icantly reduces the size of the model but also fully utilizes
the scene and object knowledge learned from images, mak-
ing the P3D ResNet, based on 2D spatial convolution plus
1D temporal convolution, significantly outperform the C3D
using direct 3D spatio-temporal convolution.

In our research project on ocean data compression, we
combined the unique advantages of C3D and P3D models
to effectively improves the processing efficiency of time and
spatial features, and our model structure is shown in Figure3.
We use the Autoencoder structure, and the compressed datas
are the latent vectors processed by the encoder, and we use
a decoder to reconstruct data. In the details of Encoder and
Decoder, we use a temporal 3D convolution to downsam-
ple the time dimension, and use a spatial 3D convolution
to downsample the spatial dimension. Then we use a GDN
module to normalize feature map. As for Decoder, we use
transpose convolution to upsample and inverse GDN(IGDN)
to renormalization.

GDN module
Follow (Ballé, Laparra, and Simoncelli 2016), we imply the
GDN module to better reconstruct image. The GDN module
is a widely used normalization method in convolutional neu-
ral networks, which introduces gating mechanisms to regu-
late feature propagation and activation. The GDN module
consists of two steps: channel-wise gating and feature map
gating. Channel-wise gating generates a control signal with
the same number of channels as the input through a 1x1x1

Figure 3: Encoder and Decoder Structure

convolutional layer, which is used to adjust the feature re-
sponse of each channel. Feature map gating multiplies the
channel-wise gating signal element-wise with the feature
map to control feature propagation. This gating mechanism
can adjust the spatial and channel correlations of features in
the network, thereby improving feature representation. The
GDN module possesses adaptive and highly non-linear spa-
tial characteristics, which distinguishes it from batch nor-
malization. Batch normalization normalizes across the chan-
nel dimension, so different samples would obtain the same
normalization result for the same channel. On the other
hand, the GDN module is adaptive in the spatial domain,
so even within the same channel, different positions may re-
ceive different normalization results. Additionally, the GDN
module exhibits highly non-linear characteristics, allowing
it to better adapt to different tasks and data.

Our analysis transformation process, denoted as ga , con-
sists of three stages: convolution, sub-sampling, and divisive
normalization. Specifically, the transformation is expressed
as u

(k)
i (t,m, n) for the ith input channel of level k at the

spatial position (t,m, n). The input image vector x corre-
sponds to u

(0)
i (t,m, n), and the output vector y corresponds

to u
(3)
i (t,m, n). Each stage begins with an affine convolu-

tion:

v
(k)
i (t,m, n) =

∑
j

(hk,ij ∗ u(k)
i )(t,m, n) + ck,i (1)

Where ∗ represents 3D convolution, followed by down-
sampling:

w
(k)
i (t,m, n) = v

(k)
i (skt, skm, skn) (2)

Where sk is the downsampling factor for stage k. Each
stage concludes with a GDN operation:

u
(k+1)
i (t,m, n) =

w
(k)
i (t,m, n)√

βk,i +
∑

j γk,ij(w
(k)
i (t,m, n))2

(3)

The full set of h, c, β, and γ parameters (across all three
stages) constitute the parameter vector ϕ to be optimized.



Similarly, the synthetic transformation gs also consists of
three stages, with the order of operations in each stage re-
versed, the downsampling replaced by the upsampling, and
the GDN replaced by an approximate inverse function we
call IGDN. We define û

(k)
i (t,m, n) as the input to the kth

synthesis stage, so that the ŷ corresponds to û
(0)
i (t,m, n),

and x̂ corresponds to û
(3)
i (t,m, n). Each stage consists of

an IGDN operation:

ŵ
(k)
i (t,m, n) = v̂

(k)
i (t,m, n)

√
β̂k,i +

∑
j

γ̂k,ij(ŵ
(k)
i (t,m, n))2

(4)
Which is followed by upsampling:

v̂
(k)
i (t,m, n) =


ŵ

(k)
i (t/ŝk,m/ŝk, n/ŝk)

, if (t/ŝk,m/ŝk, n/ŝk)not int
0

,otherwise
(5)

Where ŝk is the upsampling factor for stage k. Finally,
this is the followed by affine convolution:

û
(k+1)
i (m,n) =

∑
j

(
ĥk,ij ∗ û(k)

i

)
(m,n) + ĉk,i (6)

Similarly, the sets of parameters for ĥ, ĉ, β̂, and γ̂form the
optimizable vector θ̂. Downsampling/upsampling operations
can be implemented in conjunction with their adjacent con-
volution, thus increasing computational efficiency

NS equation
The Navier-Stokes equations are fundamental equations de-
scribing fluid motion. Proposed by Claude-Louis Navier and
George Gabriel Stokes in the mid-19th century, this system
of equations elucidates the evolution of velocity and pres-
sure fields within a fluid. It represents the motion equation
embodying the conservation of momentum for viscous flu-
ids. The Navier-Stokes equations form the cornerstone of
fluid mechanics and are crucial for understanding and simu-
lating fluid motion.

The NS equations are now widely used to simulate var-
ious physical systems, such as water flowing from a tap or
the airflow over an aircraft wing. From a physics perspective,
the NS equations operate effectively and seem to possess re-
liable predictive capabilities. Of course, the NS equations
can also be employed to simulate the movement of oceans.
Therefore, we consider introducing the NS equations as con-
straints with the expectation of further enhancing the perfor-
mance of neural networks.

The NS equations are a type of partial differential equa-
tion, and depending on the specific situation, they can
take various forms. Generally, there are three common
cases: constant viscosity conditions, incompressible fluid,
and incompressible fluid under constant viscosity condi-
tions. Here, we choose the more general case of incompress-
ible fluid under constant viscosity conditions as the prereq-

uisite. Equation represents the NS equations under this con-
dition.The NS equations in two dimensions can be expressed
as Eq8 and Eq9.

∂v⃗

∂t
+ v⃗∇v⃗ = −1

ρ
∇p+ ν∇2v⃗ + f⃗ (7)

∂u
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∂x
+ v
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= fx − 1

ρ

∂p
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∂2u
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+

∂2u
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) (8)

∂v

∂t
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∂v
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1

ρ

∂p

∂y
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∂2v
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+

∂2v
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Here,⃗v represents the velocity vector, t represents time,ρ rep-
resents fluid density,ν represents kinematic viscosity,f⃗ rep-
resents body force, and ∇ represents the del operator.

To combine the NS equation as a constrain with data re-
construction, we calculate the NS value in original data and
reconstructed data, and use it as a constrain to let the model
better rebuild the data. Our NS Loss is given in Eq10

LNS = MSE(NSU , ˆNSU ) +MSE(NSV , ˆNSV ) (10)

NSU =
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
− ν(

∂2u

∂x2
+

∂2u

∂y2
) (11)

NSV =
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
− ν(

∂2v

∂x2
+

∂2v

∂y2
) (12)

we use Euler’s forward difference to calculate the deriva-
tive items in the Eq12, and we set the kinematic viscosity
ν = 1. So our final loss is given in Eq13

L = LR + αLNS (13)

LR = MSE(u, û) +MSE(v, v̂) (14)

4 Experiment

Data Processing

We use the dataset of The South Sea of China, and be-
cause there exsist the Solid Wall conditions in the nearby
of the coast which is a complex physical procession, we clip
a 200×200 patch as shown in Figure 4. Our final dataset
composed by the ocean current velocity in longitude direc-
tion(V) and latitude direction(U), with 10272 length on time
dimension in which the interval is one hour. Considering the
calculation ability, we set t = 10, batch = 32, and we train
our model on two GTX 1080Ti with 11GB Memory.



Figure 4: Data Clipping

Evaluation Metrics
To explore our model’s ability of reconstruction quality, we
set the Compression Rate(CR, given in Eq15) at 4 and 16.
Follow the (Glaws, King, and Sprague 2020), we use mean
average errors(MAE), mean square errors(MSE) and peak
signal-to-noise ratio(PSNR, bigger is better).

CR =
uncompressed size

compressed size
(15)

MAE(x, x̂) =
1

N

N∑
i=1

|(xi − x̂i)| (16)

MSE(x, x̂) =
1

N

N∑
i=1

(xi − x̂i)
2 (17)

PSNR(x, x̂) = 10 log10

(
max(x, x̂)2

MSE(x, x̂)

)
(18)

Table 1: Compression Result

Model CR Test MSE Test MAE Test PSNR
Ours 8 34.82±2.10 0.97±0.09 6.65±0.32

Ours NS 8 35.89±2.11 0.76±0.07 5.99±0.24
Ours(100) 8 35.25±2.15 0.883±0.08 6.42±0.27

SVD 8 23.66±2.11 4.44±1.72 15.75±3.09
Ours 16 31.64±1.32 1.96±0.3 9.581± 0.642

Ours NS 16 31.71±1.54 1.904±0.25 9.55±0.584
Ours(100) 16 32.25±2.02 1.781±0.182 9.208±0.452

SVD 16 19.91±2.08 10.38±3.69 24.21±4.406

Compression Experiment
The compression result is shown in Table1, we can see that
our model is outperformed than the original SVD method.
NS represents as use NS Loss, and 100 represents star using
NS loss on the 100 epochs. We can see that using NS loss can

have better performance. Although the NS Loss calculation
method is coarse, it can provide a limitation to the model
when it reconstruct the data. And the reconstructed data is
shown in Fig5. We can see that some small-scale vortices are
not well reconstructed, we consider it is because the depth of
model is too shallow to capture the finely detailed features
in the data.

Figure 5: Decompression U data on CR=16

5 Conclusion
With the continuous development of deep learning, a large
number of excellent compression algorithms have emerged
in the field of image compression. However, in the field of
ocean research, ocean data has the characteristics of floating-
point type, which is different from the traditional integer
type image, so the traditional image compression methods
cannot be well applied to compress ocean data. We use the
powerful learning ability of deep learning models to explore
its application in ocean data compression. At the same time,
considering that ocean data is different from traditional data,
it not only includes the time dimension t, but also includes
the inherent physical information. We use the NS equation in
the ocean as prior information, and transform the NS equa-
tion into a computable equation and add it to the model train-
ing, and achieve good results. However, due to the low accu-
racy of our numerical calculation method, there is still room
for improvement in improving the effect.

In order to further improve our model performance, we
will improve it in the following aspects in the future: 1)
Use more refined NS loss, such as high-order Runge-Kutta
method to calculate the derivative. 2) Update the Back-
bone or add Transformer modules, such as NonLocal opera-
tors, Transformer feature extraction modules, etc. 3) Use the
video compression algorithm framework to further improve
the compression quality
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Ballé, J.; Laparra, V.; and Simoncelli, E. P. 2016. End-
to-end optimized image compression. arXiv preprint
arXiv:1611.01704.
Berres, A. S.; Turton, T. L.; Petersen, M. R.; Rogers, D. H.;
Ahrens, J. P.; Rink, K.; Middel, A.; Zeckzer, D.; and Bujack,
R. 2017. Video Compression for Ocean Simulation Image
Databases. In EnvirVis@ EuroVis, 49–53.
Campin, J.-M.; Hill, C.; Jones, H.; and Marshall, J. 2011.
Super-parameterization in ocean modeling: Application to
deep convection. Ocean Modelling, 36(1-2): 90–101.
de Haan, K.; Rivenson, Y.; Wu, Y.; and Ozcan, A. 2020.
Deep-Learning-Based Image Reconstruction and Enhance-
ment in Optical Microscopy. Proceedings of the IEEE,
108(1): 30–50.
Dupont, E.; Loya, H.; Alizadeh, M.; Goliński, A.; Teh,
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