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Abstract
The evaluation of drug-target interactions is of great signifi-
cance in drug discovery and reuse, and affinity values reflect
the strength of drug-target interactions. Currently, many deep
learning methods are used for predicting drug-target affini-
ties, but the vast majority of them focus on utilizing a single
feature information. In response to the above issues, a drug-
target affinity prediction model was designed. Firstly, the
structural features of the drug/target were obtained through
pre-trained model. Secondly, relationship graphs were gen-
erated based on similarity and affinity information, then ex-
tracting relationship features based on these graphs. Finally,
some feature fusion technologies were used to fuse the struc-
tural and relationship features, and affinity prediction was
performed based on these features. The experimental results
on the Davis dataset and KIBA dataset indicate that fusing
multiple feature information can effectively assist in affinity
inference.

Introduction
In May 2022, the World Health Organization (WHO) re-
leased the 2022 World Health Statistics, which showed that
as population growth and life expectancy increase, the to-
tal number of deaths from non communicable diseases is
also increasing(Organization et al. 2022). This to some ex-
tent reflects that the supply and demand between drugs and
patients have not yet reached a dynamic balance, and there
is a certain gap between the two. In particular, under the
influence of COVID-19, the public’s demand for drugs is
more urgent, and the pharmaceutical R&D industry is fac-
ing considerable pressure. However, from the perspective of
the entire drug development process, a large number of ex-
periments are required in the early stage to ensure the safety
of the drug, which makes the cost of drug development high
and the development speed slow. The reason for conducting
large-scale experiments is to find and determine the target
proteins that enable drugs to exert effective effects, which is
the key to drug development and the main factor restricting
the development process. Although high-throughput screen-
ing(Bajorath 2002), genomics, proteomics, and systems bi-
ology have been widely applied in drug discovery and drug
reuse(Rudrapal, Khairnar, and Jadhav 2020), their assistance
in large-scale biological experiments is still limited. There-
fore, conducting research on drug target interaction predic-
tion (DTI) is of great significance.

Based on the currently known drug target information,
their quantity is limited and the vast majority are obtained
through in vitro or biochemical experiments. PubChem(Kim
et al. 2019) contains approximately 35 million compounds,
with less than 7,000 containing target protein information;
ChEMBL(Gaulton et al. 2017) covers over 1.9 million com-
pounds, including over 10,000 drugs and over 12,000 tar-
gets; BindingDB(Gilson et al. 2016) contains over 7000 tar-
get data, 730,000 drug data, and over 1.65 million drug tar-
get interaction information. Although these data have impor-
tant reference value, exploring unknown drug target infor-
mation will have a greater driving effect on drug develop-
ment. Obviously, conducting large-scale biological experi-
ments to complete this task is undoubtedly expensive and
time-consuming. Therefore, the prediction of drug target
interactions based on computational methods has received
widespread attention in the industry. It is worth mentioning
that deep learning, as an efficient computational method, is
commonly used to complete large-scale prediction or classi-
fication tasks. It extracts useful features from limited data
and performs calculations; Especially with the support of
strong computing power, this method can achieve its goals
accurately and quickly, which greatly reduces time and tech-
nical costs.

More importantly, multiple fields in bioinformatics have
been cross integrated with deep learning techniques. Be-
cause this technology can extract information from large
amounts of biological data and effectively process high-
dimensional and unstructured data, it can provide more ac-
curate judgments in tasks such as gene expression analysis,
protein structure prediction, disease diagnosis, etc. In fact,
there have been cases of predicting drug target interactions
through deep learning methods in previous literature(Thafar
et al. 2019), which provides a reference for further research
in this field. However, many studies view drug target inter-
action prediction as a binary problem, ignoring the value of
drug target binding affinity. The binding affinity value is a
continuous value that reflects the strength of the interaction
between drug target pairs, so it cannot be ignored in studying
drug target interactions.

Related Work
In this study, the focus was on investigating drug tar-
get prediction methods based on deep learning. Refer-



ence(Bagherian et al. 2021) divided them into six main
branches, but overall they can be classified into three cat-
egories: feature-based methods, similarity based methods,
and cross mixing methods.

The main design idea of feature based methods is to con-
vert drugs and targets into feature vectors of a certain length
through embedding techniques and input them into a pre-
diction model. Ozturk, H. et al.(Öztürk, Özgür, and Ozkir-
imli 2018) used convolutional neural networks (CNNs) to
embed representations of drugs and proteins, and then con-
catenated them and input them into deep neural networks
(DNNs) for regression prediction; On this basis, Nguyen,
T. et al.(Nguyen et al. 2021) used a multi type graph neu-
ral network (GNN) to embed drug molecular structure dia-
grams. Similarly, Jiang, M. et al.(Jiang et al. 2020) reduced
the two-dimensional structure of proteins based on protein
contact maps and sent them together with drug molecular
structure maps to GNN for prediction. Li, M.(Li et al. 2022)
designed a bidirectional attention mechanism to aggregate
embedded representations of drugs and proteins from graph
attention networks (GAT) and CNN, which can capture im-
portant regions of drugs and proteins. Yang et al.(Yang et al.
2022) introduced tight connections and constructed a multi-
scale graph neural network based on them to obtain local
and global information.

The similarity based method predicts based on the sim-
ilarity between drug drug and target target. Zhang, X. et
al.(Zhang et al. 2017) viewed the prediction model as an op-
timization problem, predicting unknown drug target inter-
actions by identifying clusters in the drug target similarity
network and maximizing cluster consistency. J. Shim et al.
multiplied the similarity matrix between drugs and targets,
and then input it into 2D-CNN to predict interactions. X. Ru
et al.(Ru et al. 2022) extracted features using similarity and
neighborhood relationships, and predicted the affinity value
and priority order of drug targets through a ranking learning
framework.

The cross mixing method is a combination of the above
two methods, supplemented by deep learning methods or
network-based methods to extract feature information and
similarity information, thus requiring larger storage space
during the training process. Thafar, M. A. et al.(Thafar et al.
2022) constructed a weighted isomerization graph based on
drug drug similarity, target target similarity, and drug target
affinity values, and used techniques such as graph mining
to generate or extract features to predict the binding rela-
tionship between drugs and targets. Similarly, Shao, K. et
al.(Shao et al. 2022) proposed an attention based heteroge-
neous graph model that utilizes GCN and GAT to obtain em-
bedded representations of drugs and targets, and finally uses
an inner product decoder for interaction prediction.

Proposed Solution
The research objective of this article is to predict the affin-
ity between drugs and targets. The proposed deep learning
based drug target affinity prediction model consists of three
modules, and the framework is shown in Figure 1.

Module 1. feature extraction of drug/target structure. Se-
lect appropriate feature extraction models based on the

Figure 1: Structure diagram of drug target affinity prediction
model based on deep learning

structural characteristics of drugs and proteins; For the
molecular structure of drugs, it can be viewed as a two-
dimensional graph. For protein structure, it can be regarded
as a one-dimensional amino acid sequence. Therefore, graph
neural networks and natural language processing models can
be used separately to assist feature extraction, and finally, a
multi-layer feed-forward neural network (MLP) can be used
to achieve linear mapping of feature dimensions.

Module 2. Drug/Target Relationship Feature Extraction.
The similarity matrix and affinity matrix of drugs/targets re-
flect the commonalities between drugs/targets, so relation-
ship features can be initialized based on the similarity ma-
trix and affinity matrix. On the other hand, similar drugs/-
targets can be filtered and screened based on similarity, and
a relationship graph can be constructed to extract common
feature information of the drugs/targets to be predicted. This
information can be concatenated as a feature onto the initial
relationship feature of the drugs/targets. Similarly, it is nec-
essary to perform linear mapping on the features for the next
step of feature fusion.

Module 3. Feature Fusion and Prediction. After obtaining
the structural and relational features, feature fusion technol-
ogy is used to fuse the two. The design of the fusion module
is divided into two schemes: the fusion of structural and re-
lational features of drugs/targets, and the fusion of structural
and relational features of drugs and targets. After the above
fusion is completed, it is spliced and input into a DNN for
affinity prediction.

Structural feature extraction module
Drug structure embedding. For drug structure embed-
ding, we consider inputting the molecular structure diagram
of the drug into a pre trained VGAE model for direct em-
bedding, and then unifying the feature dimensions through a
linear mapping.

The structural information of drug molecules is attached
to their corresponding Simplified Molecular Linear Input
Specification (SMILES). RDKit technology can convert
SMILES strings into the form of molecular structure graphs,
where each atom is treated as a node in the graph and the
chemical bonds between atoms are treated as edges. In ad-
dition, for node features, we no longer use the unique hot



Table 1: Atomic node characteristics

id features dimension
1 The one-hot encoding of atoms 44
2 The one-hot encoding of Atomic Node Degree 11
3 The one-hot encoding of the total number of H bound to atoms 11
4 The one-hot encoding of implicit H-numbers bound to atoms 11
5 Does the atom have aromaticity 1

sum 78

encoding of a single atom for initialization, but instead use
the integration of other features related to the atomic struc-
ture as node features. Compared to this method, it can ob-
tain more information, thus more comprehensively describ-
ing and representing the composition of molecules. Table
1 lists the components of atomic feature initialization. Af-
ter completing the above operations, we initially obtained a
drug molecular structure diagram that conforms to the graph
data format.

Although the initialized structural features comprehen-
sively aggregate information, the feature object only de-
scribes a single atom. In other words, the feature information
only describes local features, and information on how nodes
are connected and the distribution of molecular features has
not been obtained. Obviously, for us, what is more needed
is to use global features to describe the structural character-
istics of the entire drug molecule. Therefore, we propose to
use the VGAE model for embedding learning of drug molec-
ular structure diagrams.

Protein Structure Embedding At present, there are var-
ious pre trained models available for embedding protein
structures, and they are all trained in large databases. There-
fore, in this study, ESM2 150M was selected as the protein
structure pre training model, which has a total of 33 layers, a
parameter quantity of 650M, and an embedded dimension of
640. Here, we use the outputs of layers 1, 32, and 33 of the
model as protein structural features after average pooling.
Similarly, perform a linear mapping on it at the end.

Relationship feature extraction module
The relationship feature extraction module is mainly aimed
at mining valuable information based on the similarity ma-
trix and affinity values. It can be divided into three steps.
Firstly, the relationship features are initialized based on the
similarity matrix. Secondly, filtering methods are used to
generate similar relationship graphs. Finally, data mining is
performed on the relationship graphs to obtain relationship
features and concatenate them with structural features.

The initialization of relationship features is mainly based
on the similarity matrix and affinity matrix. Table 2 shows
the composition of relationship matrix initialization. Our
main approach is to extract the statistics of similarity and
affinity according to Table 2 to form new features, and then
concatenate them as initial relational features.

Afterwards, in order to fully explore the common fea-
tures between similar drugs/targets, an internal relationship
graph of drugs/targets based on similarity and affinity was
constructed. This method mainly relies on the following as-
sumptions: (1) Similar drugs act on similar targets, and vice

Table 2: Relationship feature composition

id features dimension
1 mean value 1
2 25th quartile 1
3 50th quartile 1
4 75th quartile 1
5 85th quartile 1
6 95th quartile 1
7 Top 5 maximum values 5
8 Top 5 maximum values 5

sum 16

versa. (2) The affinity values generated by similar drugs act-
ing on the same target are similar. (3) The affinity values
generated by the action of the same drug on similar targets
are similar.

Based on this, we introduce the method of selecting re-
lationship nodes and GNN to assist in mining relationship
features. The selection of relationship nodes is mainly based
on the similarity matrix, and a star shaped relationship graph
is constructed by selecting the 25 drugs/targets that are clos-
est to the predicted drugs/targets. The star shaped relation-
ship graph is a graph formed by connecting nodes around a
single node to form edges. Here, we will use the predicted
drug/target as the central node and neighboring nodes as sur-
rounding nodes

Feature fusion and prediction module

The feature fusion module mainly uses LMF based meth-
ods and Transformer based methods. For the structural and
relational features of drugs/targets, the LMF algorithm with
fast calculation speed and fewer parameters is used. For the
feature fusion of drugs and targets, the encoder part of the
Transformer framework is used. Finally, all fused features
are concatenated and sent to DNN for prediction. DNN is a
three-layer neural network architecture, connected between
each layer using the activation function PReLu.

Experiments
Evaluating indicator

The evaluation indicators used in the experimental section
of this article are concordance index, mean square error, r2m,
and area under the precision recall curve.

Concordance Index (CI) measures whether the predicted
order of two random drug target pairs is the same as their
true order, where the predicted order and true order are de-
termined by comparing the predicted and true values of two
drug target pairs, respectively (Steck et al. 2007). The higher
the CI value, the higher the accuracy of the model. The cal-
culation formula is as follows:

CI =
1

m

∑
yi>yj

ρ(ŷi − ŷj)



here,

ρ(x) =

{
1, x > 0
0.5, x = 0
0, x < 0

Where m is the standardized constant. yi and yj represent
the true affinity values. ŷi and ŷj represent the predicted val-
ues of yi and yj , respectively.

Mean Square Error (MSE) reflects the degree of differ-
ence between the true and predicted values, with smaller
MSE values indicating higher accuracy of the model. The
calculation formula is as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2

Among them, y and ŷ respectively contain the true and pre-
dicted values of data. yi and ŷi represent the true and pre-
dicted values of the th sample, respectively.

r2m is a parameter used to evaluate the external predictive
performance of QSAR models. When the r2m of the test set is
greater than 0.5, it indicates that the model is an acceptable,
robust, and non chance obtained model (Pratim Roy et al.
2009). The higher the r2m, the more stable the model is.The
calculation formula is as follows:

r2m = r2(1−
√

r2 − r20)

Here, r2 represents the square of the correlation coefficient,
and r20 represents the square of the correlation coefficient
with a intercept of zero

Area Under Precision Recall (AUPR) is mainly applied
to binary prediction. Here, in order to measure the perfor-
mance of the model’s binary prediction, we convert quanti-
tative datasets into binary datasets by setting affinity thresh-
olds; Specifically, for the Davis dataset, it will be used
pKd = 7 as a threshold; The KIBA dataset will be set
pKd = 12.1 as a threshold (He et al. 2017).

Experimental Design
For the GNN module in relation feature extraction, a double-
layer neural network structure of GCN+GAT is adopted;
For the feature fusion module, use an 8-layer 6-head Trans-
former encoder and an LMF algorithm with rank=8.

The experiment used the Davis and KIBA datasets for
model training, validation, and testing, and fine tuned the hy-
perparameters of the model using nested five fold cross val-
idation. During the training phase, the model is iteratively
trained for 1000 rounds with a batch size of 256, and the
Adam algorithm is used to optimize the entire network. In
the validation stage, the optimal hyperparameter combina-
tion is mainly selected based on the CI value of the model
on the validation set, with a maximum iteration round of 500
set on the validation set.

The experiment in this section mainly explores the fol-
lowing two questions:

Firstly, how does our model perform compared to tra-
ditional algorithms. Compared with traditional drug tar-
get affinity prediction models, our model introduces struc-
tural and relational features, and completes the prediction

task by organically integrating the two. This section of the
experiment will compare the performance of our model
with seven other affinity prediction models (KronRLS al-
gorithm (Pahikkala et al. 2015), SimBoost algorithm (He
et al. 2017), DeepDTA (Öztürk, Özgür, and Ozkirimli 2018),
GraphDTA (Yang et al. 2022), FusionDTA (Yuan, Chen, and
Chen 2022), MGraphDTA (Yang et al. 2022)) on different
datasets.

Second, what is the contribution of each module in the
model to the final performance. Our model consists of 5
modules, namely drug structure feature extraction module,
target structure feature extraction module, drug relationship
feature extraction module, target relationship feature extrac-
tion module, and feature fusion module. Different modules
may have varying contributions to the model, and this part of
the experiment will explore the impact of different modules
on model performance through ablation experiments.

Results and Analysis
The experimental results of comparing the performance of
the proposed model with other drug target affinity prediction
algorithms are shown in Table 4-2. The experimental results
are the average of the results obtained by each model in three
experiments on each dataset, and the best performance on
each dataset is highlighted in bold. The results demonstrate
the following findings.

On two datasets, our model performed better than other
models in predicting the affinity of unknown drugs/targets,
especially on the Davis dataset. Our model achieved good
improvement in both, and these indicators, and the values
were close to the best performance in traditional algorithms.
Specifically, in terms of, and indicators, our model performs
as 0.166, 0.778, and 0.773. Compared to the second best ex-
perimental results, our model has improved by 19.8%, 6.1%,
and 6.9% on these indicators, respectively; It is worth men-
tioning that the second best result only increased by 0.4%,
4.6%, and 0.7% compared to the third best result, and these
improvements sometimes do not come from the same model.
For the KIBA dataset with a large amount of data, our model
performs similarly to current popular algorithms, and the
overall improvement effect is not significant, with only a
slight improvement in metrics. After comparing and analyz-
ing with the Davis dataset, it is speculated that several fac-
tors may limit the performance improvement of the model
on large datasets.

1.The protein protein similarity distribution in the KIBA
dataset is clustered between 0.0 and 0.2, and the differences
between them are not significant (the protein protein sim-
ilarity distribution in the Davis dataset is between 0.3 and
0.7, and is approximately normal distribution). Therefore, it
may affect the generated relationship features to some ex-
tent, and the model is difficult to capture these subtle differ-
ences, which may have a negative impact on the final pre-
diction.

2. From the analysis of current popular model structures,
it is found that learnable modules such as GNN, LSTM,
CNN, etc. are used for extracting structural features of drugs
and targets. These learnable models will focus on extracting
useful feature information for affinity value prediction based



on the loss function, to some extent reducing the impact of
noise on the model.

(a)

(b)

Figure 2: Comparison of ablation experimental results of
modules on different datasets (a) Experimental results on
Davis dataset (b) Experimental results on KIBA dataset

Table 3 shows the ablation experimental results of differ-
ent modules on two datasets, and Figure 2 visualizes them
separately. The experimental data shows that on the Davis
dataset, protein structure embedding has the deepest impact
on the model, resulting in a decrease of 3.8%, 45.2%, 15.4%,
and 6.4% in the performance of various indicators, respec-
tively. Therefore, this indicates that protein structure embed-
ding plays a greater role in our model; In addition, from
the perspective of indicators, the structural characteristics of
drugs have the greatest impact on the stability of the model.
The absence of structural characteristics of drugs reduces
the performance of the model to 0.678, with a decrease of
about 14%; It is worth mentioning that the absence of drug
relationship features actually leads to a slight improvement
in the model’s performance on AUPR, but this improvement
is not significant, only 0.004. Therefore, it can still be con-
sidered that the drug relationship does not have a significant
effect on the model’s performance on this indicator. From
the comprehensive comparison of the four indicators, the
fusion module has the smallest impact on the model. Com-
pared with the non operational model, the non fusion mod-

ule only reduces the performance of each indicator by 0.3%,
9.0%, 2.1%, and 0.53%, respectively. On the KIBA dataset,
compared with other features, the loss of protein structure
feature information has the greatest impact on the accuracy
of model prediction. The results showed that the absence
of protein structure feature increased the prediction error to
0.165, while the CI value decreased to 0.862. Similar to the
Davis dataset, it was also found that the fusion module had
the smallest impact on the model, with decreases of 1.4%,
3.6%, 2.1%, and 4.1%, respectively.

Based on the experimental results, we found that fusing
multiple feature information can improve the inference per-
formance of the model to a certain extent. Among them, pro-
tein structure feature information has the greatest impact on
the final prediction performance, so it is of the highest im-
portance; The feature fusion method has the least impact on
the performance of the model, so it is possible to consider
improving the structural design of this module in the future
to achieve better enhancement effects.

Conclusion
Starting from the internal structure and external relationship
characteristics of drugs/targets, this article studies feature
extraction and fusion techniques to better assist in predict-
ing drug target affinity. The main work is as follows:

Propose a drug target affinity prediction model based on
deep learning methods. Firstly, the structure and relation-
ship features of drugs/targets are introduced, and pre trained
models and custom feature extraction methods are used to
initialize the structure and relationship features. A relation-
ship graph is constructed based on similarity and relation-
ship features are mined. Finally, feature fusion technology
is used to fuse the drug structure features, drug relationship
features, target structure features, and target relationship fea-
tures, And send it to the prediction module to complete the
affinity value prediction. This model uses graph neural net-
works and feature extraction and fusion methods to embed
drugs and targets, and based on this, achieves more accurate
prediction of drug target affinity values.
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