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Abstract

RILO presents a novel framework aiming to enhance the
precision of Inertial Measurement Unit (IMU)-based mo-
tion estimation. Leveraging a backbone ResNet18 architec-
ture, RILO integrates an auxiliary neural network (NET2) to
discern training-real world motion disparities. NET2 learns
basic weights (wp) initially, capturing model error pat-
terns. Subsequent fine-tuning refines weights (w.) to align
with realworld motion features. Employing TLIO dataset
and visualinertial filter supervision, experiments showcase
RILO’s superiority over TLIO, achieving a reduced RMSE
of 1.305 with MSE loss, showcasing the efficacy of the pro-
posed auxiliary network in improving IMU-based motion es-
timation.

Introduction

In recent decades, Inertial Measurement Units (IMU) have
played a pivotal role in various fields, including robotics,
augmented reality, and autonomous vehicles, offering cru-
cial information for navigation, motion tracking, and spa-
tial awareness(Chen and Pan 2023). While IMU are widely
used to measure acceleration, angular velocity, and orienta-
tion, this paper adopts the standard definition of IMU as a
device that integrates accelerometers and gyroscopes to esti-
mate the object’s motion in three-dimensional space(Huang
et al. 2022)(Li et al. 2022). The significance of IMU lies in
their ability to provide real-time data that aids in navigation,
object tracking, and environmental mapping.

Despite extensive research in IMU technology, addressing
the inherent uncertainties has remained a challenge, and no
single study has comprehensively tackled this issue to date.
This paper explores the application of deep learning tech-
niques to mitigate the uncertainties associated with IMU. By
leveraging the power of neural networks, we aim to enhance
the accuracy and reliability of IMU-based systems. This re-
search, for the first time, investigates the use of deep learn-
ing models for IMU data, offering a potential solution to the
longstanding problem of uncertainty in motion and orienta-
tion estimation. The primary issues addressed in this paper
include a) the challenges posed by IMU uncertainty,and b)
the application of deep learning to improve IMU data.
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Related work

PDR. Pedestrian dead reckoning(Harle 2013) (PDR)
forms a dead-reckoning model by detecting gait informa-
tion, which is collected by IMU. This approach consists of
several submodules: step detection, step length estimation
and step orientation estimation. Hand-designed parameters
are required by these modules, which means that it’s difficult
to cover the great mass of motion patterns. In short, All of
traditional gait model-based methods cannot deal with com-
plex but normal scenes.

TLIO. Tight Learned Inertial Odometry(Liu et al. 2020)
(TLIO) uses Extended Kalman Filter (EKF) and ResNet18
model to reduce drift and uncertainty for EKF. The network
offers the displacement estimates and their uncertainties
which parametrize the diagonal entries of the covariance.
The EKF propagates with raw IMU samples and uses net-
work outputs for measurement updates. However, in cases
where the datasets do not cover certain motion patterns,
the model’s predicted output can exhibit significant devia-
tions from the expected behavior. This approach needs high-
quality datasets to establish the relationship between the
IMU and pose, which is difficult. Similar to TLIO, RONIN
which is alse data-driving inertial odometry face the same
problem.

Uncertainty Estimation and Evaluation of DNN. Ac-
cording to previous work, there exist some way to estimate
the uncertainty.

Single deterministic methods give the prediction based
on one single forward pass within a deterministic network.
They can be roughly categorized into approaches where one
single network is explicitly modeled and trained in order
to quantify uncertainties (Sensoy, Kaplan, and Kandemir
2018) (Malinin and Gales 2018) (Mozejko, Susik, and Kar-
czewski 2018) (Nandy, Hsu, and Lee 2020) (Oala et al.
2020) and approaches that use additional components in or-
der to give an uncertainty estimate on the prediction of a
network (Raghu et al. 2019) (Ramalho and Miranda 2020)
(Oberdiek, Rottmann, and Gottschalk 2018) (Lee and Al-
Regib 2020) .Single deterministic methods are computation-
ally efficient in training and evaluation.But this method rely
on a single opinion and can therefore become very sensitive
to the underlying network architecture, training procedure,
and training data.



Bayesian methods cover all kinds of stochastic DNNG, i.e.
DNNs where two forward passes of the same sample gen-
erally lead to different results. Bayesian Neural Networks
(BNNs) (Denker et al. 1987) (Tishby, Levin, and Solla 1989)
(Buntine 1991) have the ability to combine the scalability,
expressiveness, and predictive performance of neural net-
works with the Bayesian learning as opposed to learning via
the maximum likelihood principles.

Ensemble methods combine the predictions of several
different deterministic networks at inference. (Lakshmi-
narayanan, Pritzel, and Blundell 2017) are often referenced
as a base work on uncertainty estimations derived from en-
sembles of neural networks. Ensemble methods are very
easy to apply since no complex implementation or major
modification of the standard deterministic model have to be
realized. Furthermore, ensemble members are trained inde-
pendently from each other, which makes the training easily
parallelizable. But this method was limited by the computa-
tion power or memory , since the application is time-critical,
or very large networks with high inference time are included
(Malinin, Mlodozeniec, and Gales 2019).

Also, there exists some ways to evaluate uncertainty in
regression tasks. For data uncertainty, regression tasks only
predict a pointwise estimation without any hint of data un-
certainty. A common approach to overcome this is to let
the network predict the parameters of a probability distri-
bution, for example, a mean vector and a standard deviation
for a normally distributed uncertainty (Lakshminarayanan,
Pritzel, and Blundell 2017) (Kendall and Gal 2017). For
model uncertainty, The most common measures for this are
mutual information (MI) and the expected Kullback-Leibler
Divergence (EKL).

Proposed Solution
Backbone Network

Architecture and Loss Function Design The backbone
network adopts a one-dimensional version of the ResNet18
architecture proposed in (He et al. 2016). Input dimensions
of N x 6, representing N IMU samples in the gravity-aligned
frame, lead to the output of two 3D vectors: displacement
estimates d and their uncertainties u, with u parameterizing
the covariance’s diagonal entries. These vectors incorporate
independent fully-connected blocks, extending the ResNet
architecture.

Two distinct loss functions, Mean Square Error (MSE)
and Gaussian Maximum Likelihood(GML), are employed
during training.

Data Source We utilize the TLIO paper’s dataset(Liu et al.
2020), featuring an IMU (Bosch BMIO55) mounted on a
headset rigidly attached to cameras. The dataset comprises
400 sequences, totaling 60 hours of pedestrian data, captur-
ing diverse activities. Position estimates, obtained at 1000
Hz using a visual-inertial filter(Mourikis and Roumeliotis
2007), serve as supervision data for training.

IMU Model The IMU sensor directly measures non-
gravitational acceleration a and angular velocity w in the

IMU frame. Measurements are subject to noise 74, and bias
bg:q, modeled as:

W = Werye + bg + 1y
a = Qgrye + b + Ng

Here, n4 and n, follow zero-centered Gaussian distribu-
tions, and biases evolve as a random walk process over the
IMU sampling period dt with parameters 7744 and 7,4.

Auxiliary Network

In this study, we introduce an auxiliary neural network, re-
ferred to as the NET2 model, designed to understand the
differences between training and actual motion features. The
primary goal is to adjust the parameters of the primary NET1
model to improve overall performance. Below are the de-
tailed steps for training and adjusting the auxiliary NET2
model. Fig 1 shows the architecture.

NET2 Model Architecture The auxiliary NET2 model
adopts a multilayer perceptron (MLP) structure, aiming to
comprehend the disparities between training and actual mo-
tion features. The model comprises an input layer, hidden
layers, and an output layer. The input layer receives the pre-
vious second’s motion features (d) and uncertainty assess-
ment (u) from the primary NET1 model.

Learning Basic Weights w; Firstly, the auxiliary NET2
model undergoes training using the outputs of the NETI
model (motion features and uncertainty assessment) to learn
basic weights (wy). These weights capture the error patterns
of the general model, intending to capture features during
the training process.

Input Data: Utilize the outputs of the NET1 model as in-
put data, including motion features (d) and uncertainty as-
sessment (u).

Loss Function: Define a loss function that measures the
difference between the predicted values of NET2 (d.) and
the actual error (difference between G and d).

(de — (GT —d))*
log(Ady)

Optimization Algorithm: Employ an optimization algo-
rithm, such as stochastic gradient descent (SGD) or Adam,
to learn the basic weights (wyp).

In summary, the learning of basic weights (wj) is a funda-
mental step in the training process, providing the auxiliary
NET2 model with the foundation to comprehend general
motion characteristics and uncertainties. The thoughtful de-
sign of the loss function and the application of optimization
algorithms contribute to the effective acquisition of these ba-
sic weights, setting the stage for subsequent fine-tuning and
adaptation to real-world motion features.

loss =

Weight Adjustment during Fine-tuning (w.) After the
initial phase of learning basic weights (wyp), the auxiliary
NET?2 model undergoes a crucial fine-tuning process to fur-
ther refine the weights denoted as w.. This stage is pivotal
in adapting the NET2 model to real-world motion features,
with a specific focus on minimizing the disparities between
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Figure 1: RLIO architecture.

the NET1 model predictions and the actual errors observed
during system operation.

Similar to the basic weight learning phase, the input data
for the fine-tuning process comprises motion features (d)
and uncertainty assessments (u) derived from the NET1
model’s outputs. This ensures that the fine-tuning is in-
formed by the motion characteristics observed during the
training phase.

The loss function used during fine-tuning is designed to
measure the disparity between the predicted values of NET2
(de) and the actual error, represented by the difference be-
tween the ground truth (GT) and the motion features (d). The
formulation of this loss function ensures that the fine-tuning
process actively corrects any deviations from the actual mo-
tion patterns.

In summary, the fine-tuning process with the adjustment
of weights (w,.) is a crucial step in the training pipeline. It
enables the auxiliary NET2 model to adapt specifically to
actual motion features, contributing to the overall improve-
ment of the system’s predictive accuracy and robustness.

Data Distribution Shift The concept of Data Distribution
Shift plays a pivotal role in the training and adjustment pro-
cesses of the auxiliary NET2 model. Through the iterative
phases of learning and adapting weights, the model aims
to grasp and comprehend the distinctions between the train-
ing dataset and the actual motion features encountered dur-
ing real-world scenarios. A nuanced exploration of this phe-
nomenon sheds light on the model’s adaptability and its abil-
ity to generalize effectively to real-world motion dynamics.

Data Distribution Shift refers to the inevitable differences
between the data distribution encountered during training
and the distribution observed in real-world scenarios. In the
context of the auxiliary NET2 model, these disparities may
arise from variations in motion patterns, environmental con-
ditions, or other factors not fully encapsulated in the training
dataset.

To specifically address the Data Distribution Shift, the
fine-tuning process becomes particularly relevant. During
fine-tuning, the model refines its understanding of actual

motion features, further narrowing the gap between the
learned representations and the real-world distributions en-
countered during system operation.

In summary, the understanding and management of Data
Distribution Shift are integral components of the auxiliary
NET2 model’s training process. The model’s adaptability,
gained through continuous learning and fine-tuning, posi-
tions it to effectively generalize and make accurate predic-
tions in real-world scenarios with varying data distributions.

The above outlines the auxiliary NET2 model’s training
and adjustment process, providing details on its architecture,
training steps, and how it adapts to actual motion features to
enhance the overall system’s performance.

Benefits of Adding the Auxiliary Network

In the TLIO framework, the localized gravity-aligned frame
defines measurements to decouple global yaw information
from relative state measurements. These techniques com-
pensate for errors and reduce drift, successfully enhancing
the network’s robustness to sensor biases and rotation in-
accuracies. Building upon the RESNET backbone used in
TLIO, the introduction of the Auxiliary Network brings sev-
eral advantages:

Improved Robustness to Sensor Variabilities The Aux-
iliary Network, trained in conjunction with the Backbone
Network, facilitates the disentanglement of global and lo-
cal motion characteristics. This aids in enhancing the net-
work’s resilience to sensor biases and inaccuracies in rota-
tional measurements.

Guiding Backbone Network Based on Motion Charac-
teristics The Auxiliary Network serves as a guiding mech-
anism for the Backbone Network, enabling it to perceive dif-
ferences between training and real-world motion character-
istics. By iteratively optimizing the results in the Backbone
Network through the loss function, the Auxiliary Network
contributes to refining the main branch.

Feature Alignment with Ground Truth Through the ad-
ditional task handled by the Auxiliary Network, the Back-



bone Network gains the capability to exhibit a feature ten-
dency toward the ground truth (GT). This ability is cru-
cial for aligning the predicted results with the actual motion
characteristics.

Minimal Computational Overhead The simplicity of the
Auxiliary Network design ensures that it does not introduce
excessive computational overhead. By using d and u as in-
puts and directly adding its output to the Backbone Net-
work’s output, the Auxiliary Network offers a straightfor-
ward means to capture motion characteristic differences.

Enhanced Prediction Accuracy The output of the Aux-
iliary Network, integrated into the final prediction of the
Backbone Network, contributes to refining the overall pre-
diction accuracy. This two-branch architecture helps in cap-
turing and incorporating subtle motion pattern nuances.

In summary, the inclusion of the Auxiliary Network
complements the TLIO RESNET architecture, providing a
mechanism to enhance robustness, guide the backbone’s un-
derstanding of motion characteristics, align features with
ground truth, and improve overall prediction accuracy with-
out introducing significant computational complexity.

Experiment
Dataset

The dataset we use comes from the TLIO paper dataset. The
full dataset contains more than 400 sequences totaling 60
hours of pedestrian data that pictures a variety of activi-
ties including walking, standing still, organizing the kitchen,
playing pool, going up and down the stairs etc. It was cap-
tured with multiple different physical devices by more than
5 people to depict a wide range of individual motion patterns
and IMU systematic errors. A state-of-the-art visual-inertial
filter based on provides position estimates at 1000 Hz on the
entire dataset. We use these results both as supervision data
in the training set and as ground truth in the test set. The
dataset is split into 80% training, 10% validation and 10%
test subsets randomly.

Experiment detail

For network training, we use an overlapping sliding win-
dow on each sequence to collect input samples. Each win-
dow contains N IMU samples of total size Nx6. In our final
system we choose N=200 for 200 Hz IMU data. We want
the network to capture a motion model with respect to the
gravity-aligned IMU frame, therefore the IMU samples in
each window are rotated from the IMU frame to a gravity-
aligned frame built from the orientation at the beginning of
the window. We use visual-inertial ground-truth rotation for
that purpose. The supervision data for the network output is
computed as the difference of the ground-truth position be-
tween two instants expressed in the same headset-centered,
gravity-aligned frame.

During training, because we assume the headset can be
worn at an arbitrary heading angle with respect to the walk-
ing direction. In our final estimator, the network is fed with
potentially inaccurate input from the filter, especially at the

initialization stage. We simulate this at training time by ran-
dom perturbations on the sensor bias and the gravity direc-
tion to reduce network sensitivity to these input errors. To
simulate bias, we generate additive bias vectors with each
component independently sampled from uniform distribu-
tion in [—0.2,0.2]m/s? or [—0.05,0.05]rad/s for each in-
put sample. Gravity direction is perturbed by rotating those
samples along a random horizontal rotation axis with mag-
nitude sampled from [0, 5°].

Optimization is done through the Adam optimizer. We
used an initial learning rate of 0.0001, zero weight decay,
and dropouts with a probability of 0.5 for the fully connected
layers. The GPU we use for training is NVIDIA RTX 2080,
and the system environment is Ubuntu.

Result

We evaluate our system on the testing segmentation of the
dataset. Each of these 37 trajectories contains 3 to 7 min-
utes of human activity. Our proposed RLIO is based on an
improved TLIO model, so we will compare the results of
RLIO with those of TLIO to demonstrate that our improved
method has improved the results. To evaluate our system
performance, for each dataset of length n, calculate the root
mean square error (RMSE) between these value sets. In or-
der to present the output results of our system more intu-
itively, we plot the trajectory between the predicted and true
values.

We first compared the performance of models with differ-
ent parameters and scenarios vertically, and found that when
using the absolute values of predicted and true values in loss
and without real-time tuning, the RMSE was the smallest
and the model performance was the best.

RPE refers to Relative Pose Error, which is used to evalu-
ate the error between the estimated pose or position mea-
sured in robot or camera positioning tasks and the true
value.In general, for relative pose error (RPE), the lower
the error value, the better. In other words, the smaller the
RPE, the closer the estimated pose or position is to the true
value, which means the better the performance of the sys-
tem. Therefore, when using root mean square error (RMSE)
as a metric, smaller RMSE values typically correspond to
more accurate relative pose estimation.We can use the root
mean square error to calculate this error and obtain a popu-
lation value.

Taking a simple trajectory as an example, we first com-
pare and select different losses to choose the optimal model
structure. The results obtained from complex trajectories re-
main consistent. Fig 2 shows the results of the RLIO model
when the loss functions are MSE and GML.The RMSE of
the model is 1.305 and 1.775, respectively. Explanation:
When loss takes MSE is reached, the model performs the
best.

Then, with a loss of MSE, we compare the results ob-
tained by using a simple trajectory to compare the non real-
time tuning and real-time tuning of NET?2. Fig 3 shows the
results of the RLIO model for NET2 without real-time tun-
ing and for real-time tuning.The RMSE of the model is
1.305 and 1.631, respectively. So the model that does not
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Figure 2: For MSE (top) and GML (bottom), the results of
RLIO.
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Figure 3: The results of RLIO for NET2 without real-time
parameter tuning (top) and real-time parameter tuning (bot-
tom).

perform real-time parameter tuning on NET2 performs the
best.

Then, we compared the performance of the models hori-
zontally, and compared the results with TLIO in simple tra-
jectories and complex trajectories. The results (Fig 4 and
5) showed that our RLIO model was superior to the TLIO
model, which proves that the network structure we added is
effective in improving prediction performance.

In summary, our proposed RLIO model performs better
than the TLIO model, and the best performance is achieved
when the loss is MSE, without real-time tuning of NET2.

Conclusion

In conclusion, the study focused on addressing uncertainties
associated with IMU-based neural networks and enhancing
IMU-based navigation systems. The research aimed to an-
alyze the sources of uncertainty in IMU neural networks
and experiment with state-of-the-art IMU-based navigation
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Figure 4: For simple trajectories, the results of TLIO (left)
and RLIO (right).
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Figure 5: For complex trajectories, the results of TLIO (left)
and RLIO (right).

methods such as RoNIN and TLIO. The primary goal was
to develop an improved approach that reduces uncertainties
and drift in IMU-based inertial navigation, utilizing neural
networks and advanced data processing techniques.

The study’s proposed solution involved the implementa-
tion of a backbone network architecture and an auxiliary
network, referred to as the NET2 model, to understand the
differences between training and actual motion features. The
inclusion of the Auxiliary Network complemented the TLIO
RESNET architecture, providing a mechanism to enhance
robustness, guide the backbone’s understanding of motion
characteristics, align features with ground truth, and im-
prove overall prediction accuracy without introducing sig-
nificant computational complexity.

The experiments conducted on the dataset from the TLIO
paper demonstrated that the proposed RLIO model outper-
formed the TLIO model, particularly when employing the
Mean Square Error (MSE) loss function and without real-
time tuning of NET2. The results showcased the improved
performance of the RLIO model in comparison to TLIO,
validating the effectiveness of the added network structure
in enhancing prediction accuracy and reducing uncertainties
associated with IMU-based navigation systems.
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