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Abstract
Multivariant Time series classification is an impor-1

tant problem that has great impact on traffic, energy2

system and et al. In the real world however, time3

series data is often spatial or temporal nonstation-4

ary. i.e. the distribution changes spatially or tem-5

porally. Nowadays, it remains challenging for ma-6

chine learning techniques to build models for gen-7

eralization to unseen distributions. Self-supervised8

representation learning has been widely acknowl-9

edged in the field of computer vision to obtain ro-10

bust feature selector that can be used in downstream11

tasks. However, due to the relatively lack of effec-12

tive self-supervised representative learning meth-13

ods, the field of time series classification has not14

yet been benefited from it. In this paper, we use a15

two stage separate training strategy to learn a con-16

trastive learning based encoder and a normal de-17

coder. Empirically, our simple method improves18

generalization on a time series benchmark for dis-19

tribution shifts.20

1 Introduction21

Time series classification is one of the most challenging22

problems in the machine learning and statistics community23

[Ismail Fawaz et al., 2019], [Du et al., 2021]. One important24

nature of time series is the non-stationary property, indicating25

that its statistical features are changing spatially or tempo-26

rally. For example, traffic or weather time series at different27

locations, biological time series on different persons, and28

time series even change with time. For years, there have been29

tremendous efforts for time series classification, such as hid-30

den Markov models [Fulcher and Jones, 2014], RNN-based31

methods [Hewamalage et al., 2021], and Transformer-based32

approaches [Li et al., 2020].33

34

We propose to model time series from the distribution35

perspective to handle its dynamically changing features;36

more precisely, to learn robust representations for time37

series that generalizes to unseen distributions. The general38

Out-of-Distribution/domain generalization problem has been39

extensively studied [Wang et al., 2022], [Krueger et al.,40

2021]., where the key is to bridge the gap between known 41

and unknown distributions. Despite existing efforts, OOD 42

in time series remains less studied and more challenging. 43

Compared to image classification, the dynamic distribution 44

of time series data keeps changing over time, containing 45

diverse distribution information that should be harnessed for 46

better generalization. 47

48

In this paper, we use a contrastive learning framework as 49

encoder to learn robust features based on self-supervision and 50

a normal decoder. For the encoder, we used self-supervised 51

pre-training in time series by modeling Time-Frequency 52

Consistency (TF-C) [Zhang et al., 2022b]. TF-C specifies 53

that time-based and frequency-based representations, learned 54

from the same time series sample, should be closer to 55

each other in the time-frequency space than representations 56

of different time series samples. Specifically, we adopt 57

contrastive learning in time-space to generate a time-based 58

representation. In parallel, we propose a set of novel 59

augmentations based on the characteristic of the frequency 60

spectrum and produce a frequency-based embedding. TF-C 61

is designed to be invariant to different time-series datasets, 62

which can produce generalizable features. For the decoder, 63

we simply use a normal linear classifier. 64

65

Ther are two stages of our framework. Firstly, we pre-train 66

the contrasive encoder based on TF-C to learn robust feature 67

representations across different distribution shifts. After that, 68

we froze this encoder and train the classifier using the same 69

training datasets but with labels to take full advantage of 70

the supervised information. Empirically, our simple method 71

improves generalization on a time series benchmark for dis- 72

tribution shifts. Theoretically, we see this improvement as a 73

bias-variance trade-off. The end-to-end training fails to adapt 74

domain shifts because its supervised training is completely 75

based on biased training data that do not represent the new 76

out-of-domain distribution. The other extreme is not to use 77

labeling at all but only representation learning; this is also 78

undesirable because the completely unsupervised learning 79

will be equal to clustering, boosting the bar dramatically. 80

81

In summary, our contributions are as follows: 82

• Novel problem: We propose to tackle the domain gen- 83

eralization in time series problem, which is more chal- 84



Figure 1: The framework of our two-stage separate training method. The different color of stage 1 and stage 2 means that they are trained
separately and have no relation in principle.

lenging than the image classification due to the the both85

spatial and temporal distribution shifts in time series.86

• Effective method: We use a two-stage training strategy87

to learn self-supervised representations while keeping88

the supervised information. Although the paradigm of89

linear probing is widely applied in computer vision, this90

is the first time used to tackle the out-of-distribution time91

series problem.92

• Better performance: Empirically, our simple method im-93

proves generalization 3 points on a time series bench-94

mark for distribution shifts.95

2 Related Work96

2.1 Time series classification97

Time series classification is a challenging problem. Re-98

searches mainly focus on temporal relation modeling via99

specially-designed methods, RNN-based networks [Hewa-100

malage et al., 2021], or Transformer architecture [Li et al.,101

2020]. To our best knowledge, there is only one recent work102

[Du et al., 2021] that studied time series from the distribu-103

tion level. However, AdaRNN is a two-stage non-differential104

method that is tailored for RNN.105

2.2 Domain Generalization106

Domain / OOD generalization [Wang et al., 2022] typi-107

cally assumes the availablality of domain labels for training.108

Specifically, [Matsuura and Harada, 2019] also studied DG109

without domain labels by clustering with the style features for110

images, which is not applied to time series and is not end-to-111

end trainable. Disentanglement [Peng et al., 2019], [Zhang112

et al., 2022a] tries to disentangle the domain and label infor-113

mation, but they also assume access to domain information.114

In summary, the methodology of using representation learn- 115

ing to tackle domain generalization problem remains undis- 116

covered. 117

2.3 Self supervised learning for time series 118

Although there are studies on self-supervised representation 119

learning for time series [Rebjock et al., 2021], [Sarkar and 120

Etemad, 2020] and self-supervised pre-training for images 121

[Chen et al., 2020a], [Chen et al., 2020b], all previous work 122

has been focus on fine-tuning to adapt to downstream tasks. 123

It seems to be an undiscovered area to take full advantage 124

of representation learning for domain generalization. [Shi 125

et al., 2021] developed the only model to date that is explic- 126

itly designed for self-supervised time series pre-training. The 127

model captures the local and global temporal pattern, but it 128

is not convincing why the designed pretext task can capture 129

generalizable representations. Although several studies ap- 130

plied transfer learning in the context of time series [Rebjock 131

et al., 2021], [Sarkar and Etemad, 2020], there is no founda- 132

tion yet of which conceptual properties are most suitable for 133

pre-training on time series and why. 134

3 Methods 135

In this section, we present the architecture of the two stage 136

separate training strategy, self-supervised contrastive encoder 137

F, linear classifier and implementation details. 138

3.1 Contrastive Encoder 139

Time-based Contrasive Encoder: For a given multivariant 140

time series xi, an data augmentation set XT
i is established 141

through a time-based augmentation bank, which includes 142

jittering, scaling, time-shifts, and neighborhood segments, 143

all well-established in contrastive learning [Kiyasseh et 144

al., 2021]. For each xi and augmented sample x̃T
i ∈ XT

i , 145



Figure 2: Borrowed idea of TF-C approach. The TF-C property is realized by promoting the alignment of time- and frequency-based
representations in the latent time-frequency space, providing a vehicle for transferring F to a target dataset not seen before.

based on temporal characteristics, we send them both into146

the time encoder GT , then we will have hT
i = GT

(
xT
i

)
147

and h̃
T

i = GT

(
x̃T
i

)
. As x̃T

i is generated based on xT
i ,148

after passing through GT, we assume the embedding of149

xT
i is close to the embedding of x̃T

i but far away from the150

embedding of xT
j and x̃T

j that are derived from another151

sample xT
j ∈ Dpret [Chen et al., 2020a]. In specific, we152

select the positive pair as
(
xT
i , x̃

T
i

)
and negative pairs as153 (

xT
i ,x

T
j

)
and

(
xT
i , x̃

T
j

)
.154

155

Frequency-based Contrastive Encoder: We generate156

the frequency spectrum xF
i from a time series sample xT

i157

through a transform operator (e.g., Fourier Transformation158

[Brigham and Morrow, 1967]). The frequency information in159

time series is universal and plays a key role in classic signal160

processing [Soklaski et al., 2022], but it is rarely investigated161

in self-supervised contrastive representation learning for162

time series. In this section, we develop augmentation method163

to perturb xF
i based on characteristics of frequency spectra164

and show how to generate frequency-based representations.165

We hope this augmentation will improve the robustness in166

representation learning.167

168

Similar to the time-based contrastive encoder, We uti-169

lize a frequency encoder GF to map the frequency spec-170

trum
(
e.g.,xF

i

)
to a frequency-based embedding (e.g.,171

hF
i = GF

(
xF
i

))
. We assume the frequency encoder GF can172

learn similar embedding for the original frequency spectrum173

xF
i and a slightly perturbed frequency spectrum x̃F

i ∈ XF
i .174

Thus, we set the positive pair as
(
xF
i , x̃

F
i

)
and the negative175

pairs as
(
xF
i ,x

F
j

)
and

(
xF
i , x̃

F
j

)
.176

From the time and frequency encoders above, we can now 177

calculate two contrasive loss for sample xi as: 178

LT,i = d
(
hT
i , h̃

T

i ,Dpret
)

= − log
exp

(
sim

(
hT
i , h̃

T

i

)
/τ

)
∑

xj∈Dpret ⊮i ̸=j exp
(
sim

(
hT
i , GT (xj)

)
/τ

) ,
(1)

LF,i = d
(
hF
i , h̃

F

i ,Dpret
)

= − log
exp

(
sim

(
hF
i , h̃

F

i

)
/τ

)
∑

xj∈Dpret ⊮i ̸=j exp
(
sim

(
hF
i , GF (xj)

)
/τ

)
(2)

3.2 Time-Frequency Consistency 179

To measure the distance between the temporal and frequency 180

embeddings, we map hT
i from time space and hF

i from fre- 181

quency space to a joint time-frequency space through pro- 182

jectors RT and RF , respectively. In specific, for every in- 183

put sample xi, we have four embeddings, which are zTi = 184

RT

(
hT
i

)
, z̃Ti = RT

(
h̃
T

i

)
, zFi = RF

(
hF
i

)
, and z̃Fi = 185

RF

(
h̃
F

i

)
. The first two embeddings are generated based 186

on temporal characteristics and the latter two embeddings are 187

produced based on the properties of frequency spectrum. Af- 188

ter that, we use STF
i = d

(
zTi , z

F
i ,Dpret

)
to define the dis- 189

tance between zTi and zFi . So far, we can get a consistency 190

loss LC,i that measures the distance between a time-based 191

embedding and a frequency-based embedding: 192

LC,i = STF
i (3)



Dataset Subjects Sensors Classes Samples
EMG 36 1 7 33903472

Table 1: Information on EMG dataset.

3.3 Construction of loss function193

Self-supervised loss: The overall loss function in pre-194

training has three terms. First, the time-based contrastive loss195

LT urges the model to learn embeddings invariant to temporal196

augmentations. Second, the frequencybased contrastive loss197

LF promotes learning of embeddings invariant to frequency198

spectrum-based augmentations. Third, the consistency loss199

LC guides the model to retain the consistency between time-200

based and frequency-based embeddings. In summary, the201

self-supervised loss is defined as:202

LTF−C,i = λ(LT,i + LF,i) + (1− λ)LC,i (4)

where λ controls the relative importance of the contrastive203

and consistency losses. We calculate the total loss by204

summing LTF−C,i across all pre-training samples.205

206

Supervised Classification loss: We design a normal linear207

classifier for the supervised classification task, and the loss is208

defined as cross-entropy. During classification, we concate-209

nate the projected time and frequency embeddings obtained210

through the encoder:211

LC = crossentropy(Encoder[xi], y) (5)

3.4 A Normal Classifier and Separate Training212

In summary, our framework is composed of two blocks:213

one TF-C encoder and one linear classifier. During self-214

supervision training, we only update the encoder through215

time-frequency contrasive learning to obtain label-agnostic216

universial representations using LTF−C . It should be noted217

that the two blocks are trained separately. During supervised218

training, we froze the pretrained encoder and update the clas-219

sifier to establish the relationship between the representations220

and labels.221

4 Experiments222

4.1 Dataset223

Electromyography (EMG) is a typical time-series data that224

is based on bioelectric signals. We use EMG for gestures225

Data Set (Lobov et al., 2018) that contains raw EMG data226

recorded by MYO Thalmic bracelet. The bracelet is equipped227

with eight sensors equally spaced around the forearm that228

simultaneously acquire myographic signals. Data of 36229

subjects are collected while they performed series of static230

hand gestures and the number of instances is 40000-50000231

recordings in each column. It contains 7 classes and we232

select 6 common classes for our experiments. We randomly233

divide 36 subjects into four domains (0, 1, 2, 3) without234

overlapping and each domain contains data of 9 persons.235

236

EMG data is affected by many factors since it comes237

from bioelectric signals. EMG data are scene and device-238

dependent, which means the same person may generate dif-239

ferent data when performing the same activity with the same240

Algorithm 1 Separate Training for Domain Generalization
Input: A set of time series sample X, one out-of-distribution
time series sample xOOD

Parameter: Initialized list of hyper parameters
Output: The classification result of the out-of-distribution
time series xOOD

1: Stage one: Self-supervised TF-C Contrastive Train-
ing

2: for xi, xj(i ̸= j) in X do
3: Produce time based augmentation x, xT

4: Produce frequency based augmentation x, xF

5: Pass the time/frequency encoder respectively and get
zT , zF

6: Calculate the contrastive loss LTF−C

7: Update the encoder
8: end for
9: Stage two: Supervised Classifier Training

10: for xi, xj(i ̸= j) in X do
11: Produce time based augmentation x, xT

12: Produce frequency based augmentation x, xF

13: Pass the time/frequency encoder respectively and get
zT , zF without gradient descent

14: Pass the classifier and calculate classification loss LC

15: Update the classifier
16: end for
17: Test: Out-of distribution classification
18: Put xOOD through encoder and classifier and get yOOD

19: return yOOD

device at a different time (i.e., distribution shift across time 241

(Wilson et al., 2020; Purushotham et al., 2016)) or with the 242

different devices at the same time. Thus, the EMG bench- 243

mark is challenging. 244

4.2 Preprocessing 245

We will introduce how we preprocess data and the final di- 246

mension of data for experiments here. For EMG dataset, we 247

set the window size 200 and the step size 100, which means 248

there exist 50 prevcents overlaps between two adjacent sam- 249

ples. We normalize each sample with x̃ = x−minX
maxX−minX , 250

where X contains all x. The final dimension is 8 × 1 × 200. 251

4.3 Result 252

Time series OOD algorithms are currently less studied and 253

there are only two recent strong approaches for comparison: 254

GILE (Qian et al., 2021) and AdaRNN (Du et al., 2021).We 255

further compare with 7 general OOD methods from Do- 256

mainBed (Gulrajani & Lopez-Paz, 2021). Table 1 shows that 257

with the same experimental settiings, our method achieves the 258

best average accuracy performance and is 3.2 % better than 259

the second-best method. And Table 2 gives more details on 260

various classification performance evaluation metrics. 261



Target 0 1 2 3 AVG
ERM 62.6 69.9 67.9 69.3 67.4
DANN 62.9 70.0 66.5 68.2 66.9
CORAL 66.4 74.6 71.4 74.2 71.7
Mixup 60.7 69.9 70.5 68.2 67.3
GroupDRO 67.6 77.4 73.7 72.5 72.8
RSC 70.1 74.6 72.4 71.9 72.2
ANDMask 66.5 69.1 71.4 68.9 69.0
AdaRNN 68.8 81.1 75.3 78.1 75.8
Diversify 71.7 82.4 76.9 77.3 77.1
Ours 80.1 80.2 79.2 81.7 80.3

Table 2: Results on EMG dataset. “Target” 0 - 4 denotes unseen test
distribution that is only for testing.

Target 0 1 2 3 AVG
Accuracy 80.1 80.2 79.2 81.7 67.4
Precision 87.6 82.5 86.4 82.7 66.9
Recall 88.0 83.1 87.6 83.4 71.7
F1 Score 87.7 82.7 86.5 82.6 67.3
AUROC 98.4 97.4 98.2 98.1 98.4
AUPRC 94.5 92.0 93.1 93.3 72.2

Table 3: More details on various classification performance evalua-
tion metrics.

5 Discussion262

5.1 Problem Setting of time series domain263

generalization264

Just as the fields of computer vision and natural language pro-265

cessing, the field of time series not only contain domain dis-266

tribution shifts, but more challenging due to both spatial and267

temporal variances. For instance, data collected by sensors of268

three persons may belong to two different distributions due269

to their dissimilarities. Data collected in different locations,270

using different sensors, and different characteristics (such as271

car with different brands, battery with different chemistry)272

undoubtedly would cause dissimilarities. This can be termed273

as spatial distribution shift. Moreover, there are even tempo-274

ral distribution shifts in temporal data. For example, when275

a bank leverages a model to predict whether a person will276

be a “defaulted borrower”, features like “annual incoming”,277

“profession type”, and “marital status” are considered. How-278

ever, due to the temporal change of the society, how these279

feature values indicate the prediction output should change280

accordingly following some trends that could be predicted281

somehow in a range of time. Those shifts widely exist in282

time series, as suggested by [Zhang et al., 2021] [Ragab et283

al., 2022] Time series DG is a promising yet extremely chal-284

lenging area where the goal is to learn models under spatially285

and temporally changing data distributions and generalize to286

unseen data distributions following the trends of the change.287

5.2 Limits288

Borrowed idea of TF-C: One of the most critical part289

of our framework, the TF-C self supervised encoder, is a290

borrowed idea from [Zhang et al., 2022b]. Actually, unlike291

CV and NLP, supervised learning still takes the dominant292

of time series analysis. The reason we choose TF-C is this 293

is the first work to develop frequency based contrastive 294

augmentation to leverage rich spectral information and 295

explore time-frequency consistency in time series and its 296

good performance on fine-tuning datasets [Zhang et al., 297

2022b]. What we did is to use it as part of our framework 298

and try to tackle a more challenging domain generalization 299

problem setting, where target data and labels are completely 300

unreachable during training. Our results well explains the 301

intuition that self-supervised learning are more inclined 302

to acquire general features other than supervised learning, 303

where the data distribution often comes with bias. Actually, 304

we believe that other self-supervised learning techniques, 305

such as masked time modeling will also work well in domain 306

generalization under our separate training framework. 307

308

Lack of Experiments: As mentioned before, time series do- 309

main generalization is a promising yet extremely challenging 310

and less discovered area that in great need to collect valu- 311

able and challenging datasets and establish benchmarks, in 312

both spatial and temporal scenarios. Due to time and resource 313

constraints, collecting and processing raw data from Internet 314

is time and resource costing. So in this paper, we only use a 315

public processed benchmark by [Lu et al., 2023]. In future 316

work, we will try to do experiments on more diverse datasets 317

with both spatial and temporal distribution shifts, as well as 318

proposing more powerful methods with novelty to tackle this 319

challenging problem. 320

6 Conclusion 321

We proposed a two-stage separate training framework to 322

learn generalized representation for time series classification. 323

We take good advantage of the feature universality of self- 324

supervised representation learning in stage one while keep- 325

ing the information brought by supervised labels in stage 326

two. Empirically, our simple method improves generaliza- 327

tion on one time series classification benchmark for distribu- 328

tion shifts. Theoretically, our method accords to the robust- 329

ness of self-supervised learning when facing data distribution 330

variances. 331
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