Spatial dynamic graph diffusion convolution network for traffic flow forecasting
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Abstract

Traffic flow forecasting is a challenging task due to the char-
acteristics of high nonlinear and dynamic traffic conditions
and complex traffic spatial correlation. Recent methods con-
struct the static spatial graph to model the complex spatial
relationship among traffic data and employ RNN-based mod-
els to capture temporal dependency. However, the static graph
fails to reflect the dynamic changes in the relationship of traf-
fic networks. Meanwhile, The dynamic relationship of traffic
nodes has the characteristics of time delay that most meth-
ods ignore. To improve the modeling performance, we pro-
pose a spatial dynamic graph diffusion convolution network
(SDGEN) for traffic flow forecasting. With the support of
the time delay feature transformation network, the dynamic
graph learning module integrates the passing traffic pattern
and the current traffic pattern to model the dynamic charac-
teristics of the traffic network at each time. By embedding
the dual dynamic graph diffusion convolution into a gated
recurrent uni, our model can capture spatiotemporal depen-
dency simultaneously. To enhance the ability to capture long-
term temporal correlation, we adopt the transformer in the
SDGFN. We conduct our experiments on two public traffic
datasets that demonstrate the effectiveness of our model com-
pared with conventional spatial-temporal traffic flow forecast-
ing model.

Introduction

Traffic flow forecasting is a core component of Intelligent
Transportation Systems (ITS) and a crucial foundation for
traffic information services, traffic control, and guidance (Lu
et al. 2021). It involves the utilization of dynamic traffic
data collected to predict future traffic flow within the road
network. A reliable and accurate traffic flow prediction sys-
tem is essential to alleviate network pressure, plan vehicle
routes, and ensure the efficiency and safety of the transporta-
tion system.

Traffic flow forecasting methods are primarily divided
into two categories, knowledge-driven and data-driven.
Early knowledge-driven methods employed queuing theory
and behavioral simulation, while later data-driven methods
developed rapidly, incorporating traditional statistical and
machine learning techniques, including auto-regressive in-
tegrated moving average (ARIMA) model, Kalman filter-
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ing, and SVR, etc. These methods utilize historical traffic
data to forecast traffic conditions in the next time period but
are constrained by the assumption of time series stationary
and overlook spatiotemporal correlations, resulting in poor
prediction accuracy. To capture the complex temporal cor-
relation of the historical traffic flow of the road networks,
existing methods have been proposed to combine the Graph
Neural Networks (GNN) with time series model (Chen et al.
2019; Li et al. 2017). However, there are still some chal-
lenges in traffic flow forecasting.

First, Most GNN-based approaches (Wu et al. 2019; Kong
et al. 2022) utilize static graph structures and predefined ad-
jacency which is constructed based on Euclidean distances
between sensors at road nodes to model the correlation be-
tween each traffic node. However, traffic flow data demon-
strates high non-linearity and is dynamically influenced by
multiple factors, causing the correlations between road net-
works to vary dynamically (Zheng et al. 2020a). GNN-
based on static graphs are unable to dynamically capture
the correlation between each node. Spatial-Temporal Fusion
Graph Neural Networks (STFGNN) (Li and Zhu 2021) con-
structed a Spatial-Temporal Fusion Graoh, which consists of
the temporal graph, temporal connectivity graph, and spa-
tial graph, but it still ignores modeling dynamic graphs. Al-
though GraphWaveNet (Wu et al. 2019), ASTTN (Feng and
Tassiulas 2022), etc propose adaptive adjacency matrix to
reflect global spatial correlation. They all fail to achieve the
effect of modeling the real spatial relationship under each
time node at each time step. Meanwhile, if a sudden emer-
gency happens at a traffic node, it will influence its surround-
ing nodes after a few time steps. This time-delay influence is
seldom considered in static graphs or adaptive graphs (Jiang
et al. 2023).

Second, most time series methods have insufficient cap-
ture of long-time series influence. because of the gradi-
ent vanishing and explosion. RNN-based methods (Li et al.
2021) are representative of timing series models, capturing
long-term dependencies poorly because of gradient explo-
sion and gradient vanishing. Temporal Convolution Network
(TCN), a special one-dimensional CNN, is utilized to cap-
ture features along time dimensions (Wu et al. 2019; Li and
Zhu 2021; Zhao et al. 2019). By stacking several TCN lay-
ers, the models can capture long-term time influence, but
each temporal convolution layer is still limited by the re-



ceptive field and cannot capture very long-term dependen-
cies (Guo et al. 2021).

To address the above problems, we propose a Spatial Dy-
namic Graph Diffusion Convolution Network (SDGFN) for
traffic flow forecasting. First, a dynamic graph is gener-
ated at each time step with the effect of the time delay fea-
ture transformation network (Jiang et al. 2023) and hyper-
network. The dynamic graph at each time not only reflects
the current traffic node relationship but also combines the
influence of the traffic node of the past time on the current
time node, considering the time delay on node characteris-
tics. Second, we utilize the gated recurrent unit with trans-
former to capture short-term and long-term time series. The
diffusion graph convolution is embedded into the grated re-
current units to learn global spatial correlation and temporal
correlation. In summary, the main contributions are the fol-
lowing:

* We propose a graph learning network with a time de-
lay feature transformation network to generate a dynamic
graph at each time node without any prior knowledge,
considering the current traffic node correlation and the
passing traffic node effect.

* We propose that the diffusion graph convolution into the
gated recurrent unit to capture spatio-temporal depen-
dency simultaneously. The diffusion graph convolution
network captures the dependencies of surrounding nodes
by considering the traffic data as a diffusion signal. To
handle long-term dependency capturing, we adopt the
transformer to discover the global temporal dependency.

* We conduct experiments on two real-world traffic
datasets, the experimental results demonstrate the effec-
tiveness of SDGFN on traffic flow forecasting.

Related work
Traffic flow forecasting

The task of traffic flow forecasting is to learn a function that
maps the historical traffic flow into the future traffic flow.
A traffic network can be denoted as G = (V, E, A), where
V represents the set of nodes |[V| = N and F is the set of
edges. The spatial adjacency matrix is represented as A €
RN*N " A;; = 1 means there is an edge between node i
and node 7, otherwise 0. X; € RV*P represented the traffic
signal, where D is the number of traffic features.(e.g., road
network occupancy, traffic speed, capacity, date) in time step
t, Given the historical traffic flow X;_p, ;.. and the future
Xi41:4+@, the function is formulated as:

F(X(t—P+1):tv G)HX(t+1):(t+Q) M

where X(_pi1ye = (Xi—pt1, Xi—pio, ., Xi) €
REZXN>XD and X (441):040) = (Xeg1, Xeva, oo Xe40).

Spatial-temporal Graph Neural Networks

Spatial-temporal Graph Neural Networks (STGNN) (Yu,
Yin, and Zhu 2017) is a common idea to model the trans-
portation system. The key idea for STGNN is to jointly
model spatial dependency and temporal dependency at the

same time, combining various techniques, including graph
neural network and time sequence models. SDGCN (Li et al.
2023) combines the GRU and the variant of GCN to cap-
ture spatial and temporal dependency simultaneously. Diffu-
sion Convolutional Recurrent Neural Network(DCRNN) (Li
et al. 2017) incorporates a proposed diffusion graph convo-
lutional layer into a GRU layer. Diffusion convolution is a
variant of graph convolution networks (GCN) and is partic-
ularly suitable for handling non-Euclidean relationships be-
tween multiple time series in traffic data. Previous methods
utilize a pre-defined graph to reflect the correlation between
each traffic nodes, it is limited to learning effective correla-
tions of network with missing genuine relations, some meth-
ods proposed adaptive GCN which can capture the hidden
dependency to complete incomplete information (Wu et al.
2019; Kong et al. 2022).

Self-Attention mechanism

Attention is a fundamental operation to model the depen-
dency between a collection of values and the target under a
query. Attention mechanism has been widely applied in nat-
ural language processing (NLP) (Young et al. 2018; Liu and
Guo 2019), image recognition (Hossain et al. 2019; Huang
et al. 2022), protein identification (Zhou et al. 2022; Dou
et al. 2022), recommended system (Zheng et al. 2020b) and
etc.

Self-attention which emphasizes many-to-many is a vari-
ant of the Attention mechanism. In recent years, multi-
head self-attention has been applied to traffic flow predic-
tion (Wang et al. 2020; Guo et al. 2021; Kong et al. 2022).
First, many attention models are currently attached to the
Encoder-Decoder framework. The framework stacks multi-
ple layers to capture the dynamics of traffic data more effec-
tively with multi- head attention (Feng and Tassiulas 2022;
Zheng et al. 2020a; Guo et al. 2021). Second, multi-head at-
tention is encapsulated in transformer layers which follow
recurrent network structure. The processed sequence infor-
mation via a recurrent network is passed into the attention
layer to aggregate information (Wang et al. 2020; Yan, Ma,
and Pu 2021). Lastly, Multi-head attention is also embed-
ded in other types of network structures to predict traffic
flow (Kong et al. 2022; Fang et al. 2022; Huang et al. 2020).

Proposed Solution

The framework of the Spatial Dynamic Graph Diffusion
Convolution Network is presented in Figure 1. It consists
of three main components, graph learning, dynamic diffu-
sion convolutional recurrent module, and transformer. We
describe them in more detail in the following subsection.

Traffic node embedding

Traffic flow is influenced by many external effects, includ-
ing people’s travel patterns and lifestyle, such as Urban areas
can be particularly congested during the morning rush hour
and evening rush hour. To model the comprehensive traf-
fic feature, we consider two additional embeddings to cover
weekly and daily periodicity. The traffic node embedding
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Figure 1: The framework of SDGFN.
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Figure 2: Time Delay Feature Transformation Module

x € RVXTxd can be formulated as follows.
x = Xyata + Xw + Xa
Xy = Embedding(X[:,:, 1]) 2)
X4 = Embedding(X]:,:,2])

Where X ju1q € RV*T%4 ig the traffic data X € RVxTxD
being mapped into the high dimensions. X,, € RN*Txd
and Xy € RVXT*d are stands for the week embedding and
daily embedding respectively.

Time delay feature transformation module

In real-world traffic conditions, there exists a time delay
in the impact between traffic nodes. For example, when a
traffic accident occurs in one region, it may take several
minutes to affect traffic conditions in neighboring regions.
Therefore, we employ the time delay feature transformation
module (Jiang et al. 2023) to capture the propagation delay
from the short-term historical traffic flow of each node. This
module incorporates delay information to graph learning to
model current traffic correlation at each time step.

First, we slice the historical traffic data with a sliding win-
dow of size S to obtain a set of traffic flow series. Then, we
perform k-shape clustering algorithm (Paparrizos and Gra-
vano 2015) to cluster the similar pattern traffic flow series.
The centroid p; of each cluster is to represent the cluster, the
set P ={p; | ¢ € [1,---,N,]} to represent the clustering

results, where N, is the total number of clusters. The P can
be regarded as a set of short-term traffic patterns.

Similar traffic patterns share similar effects on neighbor-
hood traffic conditions, especially abnormal traffic patterns,
congestion. We fuse the information of similar patterns into
the historical flow series representation of each node by
comparing the historical traffic flow series for each node
with the extracted traffic pattern set P, shown in Figure 2.
Given the S-step historical traffic flow series of node n from
time slice (t — S + 1) to ¢, denoted as X(;— g 1:¢),n» We first
use the transformation matrix W* and W™ to obtain high-
dimensional representations uy ,,, m; respectively.

Utn = X(t—S+1:t),an
m; = p;W™

We compare the historical traffic flow representation u; ,
of node n with the traffic pattern memory vector m; and
obtain the similarity vector w;, which is used to obtain the
integrated historical series representation r; ,, by a weighted
sum of the traffic pattern set P.

3)

w; = softmaz(u/, m;)

4)

NP
Tin Z w;(PiW¢)
i=1
where W€ is a learnable matrix. The feature of propagation
delay from the short-term historical traffic flow of each time
steps I%; can be obatined by concating the r; ,, along the
node dimensions. R; is been sent to graph learning to learn
a dynamic graph during end to end learning.

Graph Learning

Traffic condition is highly dynamic and the correlations be-
tween each node are changed with time as well. It not only
is influenced by current traffic flow but also affected by past
short time traffic flow. To model the dynamic spatial depen-
dency, Following DGCRN (Li et al. 2021), we employ a
hyper-network to learn hidden representations from the traf-
fic data to generate a dynamic graph to preserve hidden spa-
tial dependency more effectively at each time step. At each
time step, We combine the current traffic data x; with the
historical traffic flow representation R;. This process explic-
itly models the time delay in spatial information propagation
at each time step.

Hy=x || Ry &)

where H; € RBXN*d s dynamic node feature, d is the

feature dimension, B is the batch size, N is the number of
nodes, || represents the concatenation operation. The H; is
fed into graph convolution module to update the node repre-
sentation.

DF, = ©,q(Hy) (6)
where O, represents the graph convolution, © denotes the
learnable parameters. We utilize the pre-defined adjacency
matrix A to conduct the message-passing process for dy-
namic node status. The output from graph convolution is
called as dynamic filter D F;. We employ element-wise mul-
tiplication between dynamic filter DF; and the model pa-
rameters © € RV*% to dynamically adjust the correlation



between each node to obtain dynamic node embedding. The
formula of generating a graph is described as follows:

DE} = tanh(B3(DF,; 1, 01))

¢ @)
DE5 = tanh(B(DF; 2,02))

DA' = ReLU (tanh(B(DE.DE." — DELDE!")))

®)
where ©; and O, are learned parameters during end to end
learning. 3 is a hyper-parameter for controlling the satura-
tion rate of the activation function. (, ) is Hadamard prod-
uct. We name DE} € RV*% as the source dynamic node
embedding and DES € RV *4: as the target dynamic node
embedding. By calculating the similarity between source dy-
namic node embedding DFE? and target dynamic node em-
bedding DE?L, the dynamic adjacency matrix DA? can be
generated.

Dynamic Diffusion Convolutional Module

The Predefined graph reflects the stationary correlation be-
tween each node. Instead, a dynamic graph is changed with
time to reflect the dynamic spatial correlation among traffic
data. We combine the static graph and the dynamic graph
in graph representation learning to detect hidden spatial de-
pendency. The bidirectional diffusion convolution (Li et al.
2017) is embedded into graph convolution in graph repre-
sentation learning. Especially, in the part of dynamic graph
diffusion convolution, we consider the two-direction traffic
flow influence in a dynamic graph at the same time to cap-
ture more influence from both the upstream and the down-
stream traffic.

K
gox G(x) = Z 9k7fP;c€x + Gk,bpbkﬂH-
k=0
9k7de~A?k$ + 9k7d1,D~Az’k:17,
<t <t <t
DAy = DA /Z(DAij)v )

D4, = (DA)/ 3 (DAYT),

DA' = DA + 1
where P = D;'Aand P, = D; ' A" represents the transi-
tion matrix. D, = diag(Al) and D; = diag(A”1) are the
out-degree diagonal matrix and 1 € RY. P and P} repre-
sents the power series of the transition matrix Py, Py. 0y ¢
and 0, , are learnable parameters. ﬁA; represents dynamic

. . gt .
forward transition matrix. DA, represents dynamic back-
ward transition matrix. 0. ¢, Ok, Ok af, Ok, ap are learnable
parameters.

Temporal Dependency Module

Gated Recurrent Units (GRU) with fewer parameters can
effectively tackle gradient vanishing and capture long time
series. We utilize the RNN-based model to capture tempo-
ral dependency. To capture spatial and temporal correlation

simultaneously, we replace matrix multiplications in GRU
with the dynamic diffusion convolution and name it Graph
Convolution Recurrent Unit (GCRU).

u® = (O (4| [ Hi-1)),

r® = o(Opa(xe|[Hr-1)),

CW = tanh(Ocwe (x:||(r™ © Hy_1))),
H, = u® OHi_1+(1- u(t)) © o

(10)

Where x; denotes the traffic signal at time ¢, H;_; denotes
the output from GCRU at time ¢t — 1. #(®) 4(®) are reset
gate and update gate at time ¢. x G denotes the dynamic
diffusion convolution which is definedin (9 ). ©,., ©,, O,
are learned parameters for the diffusion convolution layer.

To further explore global temporal dependency more ef-
fectively, we employ transformer (Vaswani et al. 2017) to
learn the long-term temporal dependency finally.

Experiments

Table 1: The properties about PeMS04 and PeMSO0S8
datasets.

Dataset Nodes Edges Time Steps Time Windows

PeMS04 307 680 16992 Smin
PeMS08 170 548 17856 Smin
—— Ground Truth /
200 4 SDGFN /"A'{L W
A A N
/ \':P\’\ ﬁ\\\ / i \‘\
i 150 - \ j A \
* 100 ‘ \\
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Figure 3: 15 minutes ahead traffic flow forecasting on node
200 of PeMS04

To verify the performance of SDGFN, we experiment on
two public traffic datasets, PeMS04 and PeMS08. PeMS04
traffic data was collected from 307 sensors in the District04
from Jan 1st, 2018 to Feb 28th, 2018. PeMSO08 records for
two months of 170 sensors traffic flow in the DistrictOS8,
ranging from July Ist, 2018 to Aug 31st, 208. More details
about PeMS04 and PeMSO08 are presented in Table 1. We
do the same data preprocessing and construct sensor graph
as DCRNN (Li et al. 2017). We divide two datasets respec-
tively, in which 70% of data is used as the training set, 20%
of data as the testing set and the remaining data is used for
the validation set.



Table 2: Comparison of the performance of SDGFN and baselines on PeMS04 and PeMS08 datasets.

Datasets | Model | HA ~ SVR FC-LSTM | DCRNN STGCN STFGNN | SDGCN | SDGEN
g MAE | 36.54 29.34 27.89 22737  21.758 19.830 20.42 19.781
%’ MAPE | 2648 1991 21.86 14.751 13.874 13.021 14.99 13.672
L RMSE | 53.16 44.51 41.07 36.575 34.769 31.870 34.20 31.899
S MAE | 30.15 24.15 23.10 18.185 17.838 16.636 17.01 16.157
E MAPE | 19.09 15.30 18.56 11.235 11.211 10.547 10.94 10.647
L RMSE | 4420 3642 34.07 28.176 27.122 26.206 26.61 25.073
iy, — Ground Truth N dency which the static graph doesn’t have which is help-
250 O Y T soerw AW ful in traffic flow forecasting. However, SDGCN has a
N' \ ‘/f Vi, slightly weaker relationship in modeling dynamic spa-
200 : “"v,m / ' . tiotemporal changes compared with SDGFN. Probably

50 1 'V\.V‘ \

Figure 4: 15 minutes ahead traffic flow forecasting on node
50 of PeMS08

Experimental Settings

We conduct our experiments under the Linux environment
with one Intel(R) Xeon(R) Sliver 4210 CPU @ 2.20GHZ
and one NVIDIA Geforce RTX3090 GPU cards. In our
model, we set the batch size to 64 and the hidden dimen-
sion d to 64 for PeMS04 and PeMSO08 datasets. In GCRU,
the depth of dynamic graph diffusion recurrent convolution
layer is set to 1, and the depth of graph diffusion convo-
lIution K is 2. We set the number of attention heads in the
transformer layer as 2. The Adam optimization with an ini-
tial learning rate of 0.001 is utilized to train the model. We
utilize the fully connected network in output layer to map the
feature to the traffic flow predictions. The maximum epoch
is set to 150. To avoid overfitting, we employ early stopping
during training.

Experimental Results

Table 2 illustrates the average performance of SDGFN
and seven baselines. SDGFN outperforms both the tempo-
ral model (HA, SVR, FC-LSTM) and the spatio-temporal
model(DCRNN (Li et al. 2017), STGCN (Yu, Yin, and
Zhu 2017), STFGNN (Li and Zhu 2021), SDGCN (Li
et al. 2023)). We observe the following experimental phe-
nomenons.

* Benefits from the dynamic graph, which can be learned
during end-to-end learning, the performance of SDGCN
and SDGFN work better than other spatio-temporal mod-
els (STGCN, DCRNN). The dynamic graph at each
time step reflects the current traffic topology structure
more effectively and preserves hidden spatial depen-

the time delay feature transformation module effectively
extracts the influence of the past short-term traffic flow
on the current traffic flow to generate dynamic graph.

* Compared with STFGNN, the experiment indicates that
SDGEFN performs similarly to STFGNN. STFGNN and
SDGFN all have improved on the generated graph, static
graph instead. SDGFN generates the dynamic graph at
each time step, combing with the static graph to dual
graph diffusion convolution. The dynamic graph pro-
vides more real-time node correlation to help the diffu-
sion convolution to capture spatial dependencies more
effectively. STFGNN constructs several static graphs to
model the traffic node correlation from different aspect,
instead, which can also achieve the effect of dynamic
graphs to a certain extent.

* Further, we visualize the 15 minutes ahead forecasting
result and the real result in Figure 3, 4. SDGFN outputs
the smooth prediction in PeMS04 and PeMS08 and ac-
curately predicts the trend of traffic flow.

Conclusion

In this paper, we propose a spatial dynamic graph diffusion
convolution network to traffic flow forecasting. We propose
a graph learning network which employ an hyper-network
with time-delay feature transformation module to generate
dynamic graphs without any prior knowledge to preserve
hidden spatial dependency. Moreover, we propose making
dynamic Graph diffusion convolution embed into the gated
recurrent unit to capture spatial-temporal dependency simul-
taneously. Further, the transformer in SDGFN is to enhance
the model capacity to explore long-term temporal depen-
dency. Extensive experiments on two public traffic datasets
demonstrate that the superior performance of SDGFN on
traffic flow forecasting.
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