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Abstract
The generation of 3D facial animations driven by speech
faces significant challenges as it requires learning a many-to-
many mapping between speech and the corresponding natu-
ral facial motion. Previous research has mainly focused on
directly predicting 3D human facial motions from speech,
whose the ground truth are coordinates. However, in this pa-
per, we change the motion representation. Our approach aims
to learn a concise set of blendshapes from speech. By combin-
ing the generated blendshapes with 3DMM(3D Morphable
Model), we can generate more diverse faces. Compared to
using only facial vertices to represent facial motion, using
the blendshapes parameter as a prior can better model real
facial motion. The loss is expressed as a weighted combina-
tion of blendshapes and vertices errors. To cope with the data
scarcity issue, we use the self-supervised pre-trained speech
representations as audio encoder. To address the issue of lip
tremble, we integrate the transformer, which is well-suited for
handling long contexts. This integration helps mitigate the lip
tremble problem effectively. In our study, we conducted ex-
periments on self-collected news broadcast datasets. The re-
sults of extensive experiments demonstrate that our approach
can generate vivid facial animations while reducing compu-
tation.

Introduction
3D facial animation has been an active research topic for
decades, as attributed to its broad applications in virtual re-
ality, film production, and games. The objective of realistic
speech-driven 3D facial animation is to automatically an-
imate vivid facial expressions of a 3D avatar based on a
given speech signal. The high correlation between speech
and facial gestures (especially lip movements) makes it pos-
sible to drive the facial animation with a speech signal. Early
attempts mainly focused on establishing complex mapping
rules between phonemes and their visual counterpart, which
typically had limited performance (Taylor et al. 2017a; Xu
et al. 2013a). With the progress of deep learning, recent
speech driven facial animation technology has rapidly de-
veloped. However, it still remains challenging to generate
human-like motions.

In speech-driven 3D facial animation, most 3D mesh-
based works use short audio windows as input, which may
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lead to blurriness in facial expression changes. Also, as a
many-to-many mapping problem, speech-driven facial an-
imation generally has multiple plausible outputs for every
input. Such ambiguity tends to cause over-smoothed results.
obviously, to achieve realistic animation of the entire face,
a longer audio background is required. Although MeshTalk
(Richard et al. 2022) considers longer audio contexts by
modeling audio sequences, in the case of data scarcity, using
Mel spectral audio feature training models cannot synthesize
accurate lip movements. Collecting 3D motion capture data
is also quite expensive and time-consuming. Regardless,
person-specific approaches often achieve decent facial mo-
tions due to relatively consistent speaking styles, but are less
scalable for general applications. Recently, VOCA (Cudeiro
et al. 2019) has extended these methods to different iden-
tities, however, they usually exhibit indistinct upper facial
motion. This is because VOCA formulates speech driven
face motion mapping as a regression task, which encour-
ages average motion, especially on upper surfaces that are
only weakly or even uncorrelated with the speech signal. To
reduce uncertainty, FaceFormer (Fan et al. 2022a) exploits
long-term audio context via a transformer-based model and
synthesizes sequential motion in an autoregressive manner.
Although it offers significant improvements in performance,
it still suffers from the disadvantages of one-to-one mapping
and lacks subtle high-frequency motion.

We get inspiration from 3D Face Morphable Model
(3DMM) (Yang et al. 2020a), where general facial expres-
sions are represented in a low-dimensional space. Accord-
ingly, we propose to formulate speech-driven facial anima-
tion as a task of learning facial expression parameters. The
facial expression parameters also called blendshapes param-
eters. The network predicts blendshapes parameters and then
uses a 3DMM model to fit and generate facial coordinates.
We use blendshapes as a prior representation and calculate
loss together with the fitted facial coordinates. Compared to
using only facial vertices to represent facial motion, using
the blendshapes parameter as a prior can better model real
facial motion.

To address the issues of data scarcity and contextual infor-
mation, while also reducing computational complexity to a
certain extent, We propose a blendshapes parameters based
temporary autoregressive model. Firstly, it effectively uti-
lizes the self-supervised pre-trained speech representations



to handle the data scarcity issue. Secondly, the model archi-
tecture is based on transformers, which are widely recog-
nized as effective in solving contextual information. Finally,
we use the blendshapes parameter to represent facial mo-
tion, which is a set of 52 values. Based on the blendshapes
parameter to synthesize facial animation, it can reduce com-
putation to a certain extent.

Transformer (Vaswani et al. 2023) achieves remarkable
performance in both natural language processing and com-
puter vision tasks. Transformers can better capture long-
range context dependencies compared to RNN-based mod-
els. Transformer’s success is primarily due to its design in-
corporating a self-attention mechanism that effectively mod-
els both short-term and long-term relationships by paying
explicit attention to all parts of the representation. The di-
rect application of a standard transformer architecture to au-
dio sequences tends to underperform in the task of speech-
driven 3D facial animation, due to transformers are inher-
ently data-hungry, necessitating large datasets for effective
training.

Given the scarcity of 3D audio-visual data, we propose
leveraging the self-supervised pre-trained speech model,
wav2vec 2.0 (Baevski et al. 2020a). This model has been
trained on a large-scale corpus of unlabeled speech, en-
abling it to learn rich phoneme information. Despite the lim-
ited coverage of phonemes in the available 3D audio-visual
data, we anticipate that the pre-trained speech representa-
tions from wav2vec 2.0 can significantly enhance the per-
formance of speech-driven 3D facial animation tasks, even
in data-limited scenarios.

At the same time, in order to better characterize the face
movement, we use the blendshapes parameter. We lever-
age blendshape parameters as prior information, employing
3D Morphable Model (3DMM) technology to align these
parameters with facial vertex coordinates. Ultimately, we
jointly compute the loss using both the blendshape param-
eters and the facial vertex coordinates, optimizing the entire
task of voice-driven facial movement.

The main contributions of our work are as follows:

• We propose a blendshapes parameters based tempo-
rary autoregressive model for speech driven facial an-
imation. It achieves highly realistic and temporally sta-
ble animation of the entire face including both the upper
face and the lower face.

• Loss function. The loss function is weighted by the
blendshapes parameter and the face vertex coordinate er-
ror.

• Extensive experiments to assess the quality of syn-
thesized face motions. The results demonstrate that the
model performs well in realistic facial animation and lip
synchronization on our 3D dataset.

Related Work
Speech-driven 3D Facial Animation
Computer facial animation, a significant field in computer
vision, has seen a notable increase in interest over recent
years. Among its subfields, speech-driven facial animation,

which aims to animate a virtual face in sync with a provided
speech sequence, stands out. A substantial body of research
focuses on 2D face animation (Alghamdi et al. 2022; Chen
et al. 2020, 2018). However, in this study, we delve into the
animation of 3D models. The approaches to this process can
typically be classified into two categories: linguistics-based
and deep learning based methods.

Linguistics-based methods. Linguistics-based methods
are often extensively used, establishing complicated map-
ping rules between phonemes and their corresponding visual
elements, namely, visemes. One such method is the domi-
nance function (Massaro et al. 2001), which is designed to
ascertain the effect of phonemes on facial animation control
parameters. Additionally, Xu et al. (Xu et al. 2013b) deter-
mined animation curves within a devised canonical set of
visemes to facilitate synchronised mouth movements. There
are also some methods considering the many-to-many map-
ping between phonemes and visemes, as demonstrated in the
JALI (Edwards et al. 2016). The JALI methodology divides
mouth movements into lip and jaw rig animation. In doing
so, JALI manages to deliver impressive co-articulation re-
sults. However, despite these procedures providing explicit
control over the animation, they are relatively complex and
lack a systematic approach in animating the entire face.

Deep learning based methods. Recently, Taylor et al.
(Taylor et al. 2017b) introduced a deep learning-based
model that employs a sliding window technique on the tran-
scribed phoneme sequences input. VisemeNet (Zhou et al.
2018) utilized a sophisticated three-stage Long Short-Term
Memory (LSTM) network to forecast the animation curve
for a lower-face lip model.

We review the most relevant work here more specifically,
as they have the same setup as this work, i.e. training on
high-resolution paired audio mesh data and animating the
entire facial mesh independently in vertex space. They are
also based on deep learning. MeshTalk (Richard et al. 2022)
successfully separates facial information that is correlated
with audio from uncorrelated data, utilizing a categorical
latent space. However, its latent space, although effective,
doesn’t offer optimal expressivity, often causing unstable an-
imation quality in situations with scarce data. On the other
hand, VOCA (Cudeiro et al. 2019), through the application
of robust audio feature extraction models, is able to generate
various styles of facial animation. Furthermore, FaceFormer
(Fan et al. 2022a) brings in the concept of a longer-term au-
dio context with a transformer, thereby producing tempo-
rally stable animations. Nevertheless, both VOCA and Face-
Former encounter an over-smoothing issue, which could be
attributed to their direct regression approach for facial mo-
tion within the complex and widely varying audio-visual
mapping domain, characterized by significant uncertainty
and ambiguity.

3D Morphable Model
3DMM is a statistical model which transforms the shape
and texture of the faces into a vector space representation.
As 3DMM inherently contains the explicit correspondences
from model to model, it is widely used in model fitting, face
synthesis, image manipulations, etc. The recent research on



3DMM can be generally divided into two directions. The
first direction is to separate the parametric space to mul-
tiple dimensions like identity, expression and visemes, so
that the model could be controlled by these attributes sep-
arately. The models in expression dimension could be fur-
ther transformed to a set of blendshapes (Li, Weise, and
Pauly 2010), which can be rigged to generate individual-
specific animation. Another direction is to enhance the rep-
resentation power of 3DMM by using deep neural network
to present 3DMM bases. The 3DMM model used in this ar-
ticle is FaceScape (Yang et al. 2020a), which is a bilinear
model. The final face is equal to the base model times the
expression parameters times the identity parameters.

The Proposed Framework
Overview
We cast speech-driven 3D facial animation into a sequence-
to-sequence (seq2seq) learning framework and propose a
novel seq2seq network architecture (Fig. 1). Our network
takes audio, personal style, and previous facial movement
sequence as input to predict the next frame’s facial move-
ment. In our framework (Fig. 1), the encoder first converts
the audio into speech expression, and the style embedding
layer encodes the speaker’s vocal style into a set of learn-
able embeddings. The cross-modal decoder predicts the next
frame’s blendshape parameters based on past blendshape
parameters, personal style, and audio features. Finally, the
transform module converts the blendshapes into a Facescape
head. In the following sections, we will elaborate on each
component of our network architecture in detail.

Speech Encoder
Our encoder adopts the architecture of the state-of-the-
art self-supervised pre-trained speech model, wav2vec 2.0
(Baevski et al. 2020b) The encoder comprises an audio fea-
ture extractor and a multi-layer transformer encoder. The au-
dio feature extractor, composed of multiple temporal convo-
lution layers (TCN), converts the raw waveform input into
feature vectors. The transformer encoder stacks multi-head
self-attention and feedforward layers, thereby transforming
the audio features into contextualized speech embeddings.
A quantization module discretizes the convolution outputs
into a finite set of speech units. We leverage the context sur-
rounding a masked time step to identify the true quantized
speech unit by solving a contrastive task. To initialize our
encoder (Fig. 1), we employ the pre-trained wav2vec 2.0
weights.

Cross-modal Decoder
The Cross-modal Decoder takes past blendshape parame-
ters, personal style and audio features as input and autore-
gressively predicts the blendshape parameters of the next
frame. The Cross-modal Decoder contains blendshape en-
coder, transformer decoder and blendshape decoder. The
transformer decoder is equipped with the causal self- atten-
tion to learn the dependencies between each frame in the
context of the past blendshape parameters, and the cross-
modal attention to align the audio and motion modalities.

The newly predicted parameters b̂t is used to update the past
parameters as B̂1:t as preparation for the next frame predic-
tion. The formula is as follows:

b̂t = Dcross−modal(A1:T , B̂1:t−1, style) (1)

Transform Module
The Transform Module converts blendshapes, which is a
way of deforming a mesh by interpolating between differ-
ent shapes, to a Facescape head, which is a 3D head model
that captures variations in identity, expression. This trans-
form module enables our model to transfer facial expres-
sions across different virtual characters quickly. This module
is essentially a bilinear model from Facescape(Yang et al.
2020b). New face shape can be generated given the identity
parameter wid and expression parameter wexp as:

V = Cr ×Wid ×Wexp (2)

where Cr ∈ R78834×52×50 is a fixed core. Wid ∈ R50

represents the identity parameter, which is fixed in the exper-
iment. Wexp ∈ R52 represents expression parameters and is
the prediction of the network. V ∈ R78834 represents 26,278
facial vertices.

Loss function
To train our neural network, we employ a loss function that
comprises two distinct components: blendshapes loss and
vertex loss. The overall function is given by:

L = λ1Lblendshapes + λ2Lvertex (3)

where λ1 = 1E − 2,λ2 = 1.0 in all of our experiments. We
provide a detailed explanation of each of these components
below.

Blendshapes loss. Given input audio A, the encoder ex-
tracts audio features and then sends them to the decoder to
predict the corresponding blendshape parameters. Finally,
Mean Squared Error (MSE) is applied between the predicted
blendshape parameters B̂t = (b̂1, ..., b̂T ) and the ground
truth Bt = (b1, ...,bT ). The formula is as follows:

Lblendshapes =

T∑
t=1

∥ b̂t − bt ∥2 (4)

Vertex loss. When blendshapes loss is used alone, the
neural network cannot learn the mapping relationship be-
tween the audio and the corresponding blendshapes parame-
ters well, resulting in facial animation being unable to move.
Please see Ablation experiment for details. By combining
this loss, it can help the network learn the blendshapes pa-
rameters better. The Mean Squared Error (MSE) between the
predicted vertex coordinates of each frame v̂t and the ground
truth vt is vertex loss. The vertex loss can be expressed as:

Lvertex =

T∑
t=1

∥ v̂t − vt ∥2 (5)



Figure 1: Overall network architecture. An encoder-decoder model with Transformer architecture takes raw audio as input and
autoregressively generates a sequence of blendshapes parameters. Then convert it into 3D face meshes through the Transform
module.

Experiments
Experimental Settings
Dataset. We use self-collected 3D dataset, CCTV News
dataset for training and testing. The dataset provide the
audio-blendshapes pairs of Chinese spoken utterances. This
dataset is composed of 499 facial motion sequences from 8
subjects. Each sequence is captured at 25fps. Each 3D face
mesh has 26,278 vertices and the corresponding 52 blend-
shapes parameters. Due to hardware limitations, we only
used 249 audios during training. In order to verify the gen-
eralization ability of the model, we also collected 12 addi-
tional audio data read by ourselves. The calculation of errors
in subsequent experiments will use these 12 audio data.
Baseline method. We compare our model with the state-
of-the-art method, FaceFormer (Fan et al. 2022b), on self-
collected 3D dataset.
Training details. During the training process, the model
is optimized end-to-end using the Adam optimizer(Kingma
and Ba 2014). The learning rate and batch size are set to
1E-4 and 1, respectively. The model is trained on a single
NVIDIA RTX 2080 Ti, and the entire network takes approx-
imately 14 hours (100 epochs) to train.

Quantitative evaluation
To measure lip synchronization, we calculated the lip vertex
error (LVE). This evaluation metric computes the average
L2 error of the lips in the test set. For a single frame, LVE
is defined as the maximum L2 error among all lip vertices.
We trained FaceFormer and our method on the self-collected
3D dataset. The blendshape parameters were converted into
mesh vertices (26,278*3) corresponding to the Facescape
model, which was used as ground truth. Tab. 1 shows LVE
evaluation results. Faceformer has slight advantages over
our approach. This is to be expected, because our method is

to predict the blendshapes parameters and then fit the vertex
coordinates, while faceformer directly predicts the vertex
coordinates to be more accurate.

Table 1: Quantitative evaluation results of lip vertex error.

Method Lip Vertex Error(mm)↓
Faceformer 3.43465

Ours 3.72332

Robustness analysis. When using the lip maximum L2
error metric, there may be a potential impact of outliers
present in the dataset. To mitigate the impact of outliers and
present a more comprehensive evaluation, we additionally
computed the average lip vertex error (ALVE) for proposed
method. For a single frame, ALVE is defined as the aver-
age L2 error among all lip vertices. In Tab. 2, we present the
results of the ALVE obtained from our method and Face-
former.

Table 2: Quantitative evaluation results of average lip vertex
error.

Method Average Lip Vertex Error(mm)↓
Faceformer 1.95755

Ours 2.14514

Although our method is slightly inferior in error metrics, it
has huge advantages in terms of the number of parameters
of the model and the speed of inference. As shown in Ta-
ble 3, our model size is 361MB and the number of parame-
ters is 90,482,996. However, the model size of Faceformer is



Figure 2: Qualitative comparison of facial movement.

438MB and the number of parameters is 110,729,970. Judg-
ing from the number of parameters, it has been reduced by
about 20%. Our model processes approximately 19.28 sec-
onds of audio data per second in forward inference. Face-
former can only process about 9.16 seconds of audio data
per second. Our inference speed is approximately twice that
of Faceformer.

Table 3: Comparison of model size, number of parameters,
and inference speed. Inference speed refers to how many
seconds of audio data the model can process per second.

Method Model size(MB) Parameters Speed
Faceformer 438 110,729,970 9.16

Ours 361 90,482,996 19.28

Qualitative evaluation
As audio and facial movements cannot be evaluated solely
based on indicators and require human perceptual evalu-
ation, we qualitatively evaluated our model from the per-
spective of lip synchronization. We compare our model with
FaceFormer by feeding them the same audio input and gen-
erating corresponding facial animations. The results showed
that the proposed model exhibited more pronounced lip
movements and better alignment with human speech pat-
terns. Figure 2 shows facial animation sequences gener-
ated by different methods for a certain Chinese word. When
speaking the Chinese character ”hui guo”, our method gen-
erates facial movements with the lips opening wider. When
speaking the Chinese character ’ma jiang pai’, our method
generates better lip opening and closing effects.

Ablation experiment
When the loss function only uses blendshapes loss, the net-
work cannot predict the corresponding blendshapes param-
eters well based on the audio. After two or three epochs of
network training, the loss almost stopped declining and fell

into a local minimum. The final generated facial animation
is that the mouth is always closed.
In order to reduce blendshapes loss, vertex loss is introduced
during training. After the network predicts the blendshapes
parameters, it converts them into vertex coordinates through
the transform module and then calculates vertex loss. With
the guidance of vertex loss, blendshapes loss can be reduced
well. Table 4 shows the error data under different loss strate-
gies. LBE (lip blendshape error) represents the error of the
correlation parameters with lip movement. FBE (full-face
blendshape error) represents the full-face blendshape param-
eters error, that is, the error of all parameters. The combina-
tion of blendshape loss and vertex loss is smaller on LVE,
but larger on LBE and FBE. But in fact, the animated mouth
generated using only blendshape loss is always closed. Al-
though its blendshape parameters is closer to the ground
truth, the final effect is not good. Because the generated face
is the complex weighted result of all parameters. Therefore,
the quality of the method can only be judged through the
LVE indicator and the effect of the video.

Table 4: LVE, LBE and FBE under different losses.

Method LVE(mm)↓ LBE FBE
blendshape only 4.03206 0.03798 0.07514

blendshape+vertex 3.72332 0.05069 0.07743

Conclusion
This paper proposes a method based on blendshapes param-
eters to generate speech-driven 3D facial animation. In the
network, we introduce the transform module to realize the
conversion of blendshapes parameters and vertex coordi-
nates. Quantitative experimental results show that although
our method has a relatively high error, our model has fewer
parameters and faster inference speed. Qualitative experi-
mental results show that our method can generate facial ani-
mations with lip movements more synchronized with audio.
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