Swin UNETR++: An Efficient Framework for Brain Tumor Segmentation
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Abstract

Brain tumor segmentation aims to isolate and delineate
glioma tissues from healthy brain tissues within magnetic
resonance imaging, a critical step for effective diagnosis and
therapeutic strategy formulation in neurooncology. However,
MRI-based tumor segmentation is challenging due to the
complex morphology and unclear boundaries of the tumors.
To address such limitations, we propose Swin UNETR++
for fully automated tumor segmentation. Our approach uti-
lizes the Swin Transformer structure and a multi-scale fea-
ture fusion strategy, enabling the network to capture more
contextual information and high-level semantic details, thus
improving segmentation accuracy and robustness. The pro-
posed method outperforms the current SOTA model in the
BraTS 2021 datasets, with segmentation accuracies of 92.7%
for the whole tumor, 91.2% for the tumor core, and 87.6% for
the enhanced tumor, which improve upon the TransBTS, by
1.6%, 1.4%, and 0.8% respectively.

Introduction

Gliomas are the most common and deadly type of brain tu-
mor(Pereira et al. 2016), accounting for approximately 80%
malignant brain tumors(Mlynarski et al. 2019). They can
be classified into low-grade gliomas (LGG) and high-grade
gliomas (HGG), with HGG being more aggressive and inva-
sive. Glioblastoma multiforme (GBM)is the most malignant
form of glioma among astrocytic tumors and can be fatal if
not detected early.

Over the last two decades, magnetic resonance imaging
(MRI) has become a popular tool for the inspection of dif-
ferent brain disorders due to its ability to provide inter-
nal observations of brain tissues with high spatial and tem-
poral resolutions. In clinical practice, radiologists rely on
various MRI sequences to make a comprehensive diagno-
sis of gliomas. These sequences typically include T1, T2,
FLAIR, and Tlce. Each sequence provides different infor-
mation about the tumor, allowing for a more comprehensive
analysis of different subregions within the brain tumor.

Segmentation of glioma lesions is a crucial step
in computer-aided diagnosis, surgery, radiotherapy, and
chemotherapy planning for gliomas. However, segmenting
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brain tumors in high-precision magnetic resonance images
is challenging due to their complex and variable shapes,
unclear boundaries, and low contrast. Currently, manual
segmentation by radiologists is the main approach, but
it is time-consuming and lacks reproducibility. Therefore,
many efforts have been made to segment semi- or fully
automatic glioma to improve both efficiency and potential
accuracy(Isin, Direkoglu, and Sah 2016) Earlier efforts in-
cluded intensity thresholding, edge, and region-based meth-
ods.(Hiralal and Menon 2016) The intensity thresholding
method categorizes pixels based on intensity ranges(Sujji,
Lakshmi, and Jiji 2013); the edge-based approach classifies
pixels as edged or non-edged using filters(Soltanian-Zadeh
and Windham 1997); the region-based approach groups
neighboring pixels with high similarity while dividing pixels
with significant dissimilarity.(Ilunga-Mbuyamba et al. 2017)

However, these methods face challenges when applied in
scenarios that require fully automatic processing, as they of-
ten require setting of initial seed points, thresholds, and iter-
ation termination conditions. On the other hand, automatic
segmentation algorithms, which require no human interac-
tion, offer high segmentation speed and reproducible results,
facilitating the development of end-to-end applications for
glioma. Automatic segmentation is a major research direc-
tion in glioma segmentation, with improving segmentation
accuracy being a key challenge. Several algorithms based on
machine learning and deep learning have shown promising
results in brain tumor segmentation tasks. The latest research
focuses on the development of deep learning segmentation
algorithms, particularly a novel TransBTS brain tumor seg-
mentation method based on the encoder-decoder structure.
Furthermore, researchers have conducted numerous multi-
parameter MRI quantifications to mitigate the uncertain-
ties often encountered in deep learning approaches(Yang
et al. 2023). These advances aim to improve the reliability
and performance of brain tumor segmentation techniques in
medical imaging analysis. These methods not only perform
well, but also have the ability to continuously learn and up-
date themselves in a data-driven manner, enabling fully au-
tomatic segmentation that can adapt to the complex needs of
diverse clinical medical applications.

The goal of the research in this article is to design an au-
tomatic brain tumor segmentation system based on Convo-
lutional Neural Networks (CNNs). This system focuses on
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Figure 1: The overview of our proposed Swin UNETR++

multi-modal MRI image segmentation and aims to achieve
comprehensive brain tumor segmentation. By providing au-
tomatic segmentation, this system can assist clinicians in
making treatment decisions, better serve patients and doc-
tors, and make significant contributions to artificial intelli-
gence in medical and healthcare in the country.

Related work

With the advancement of medical imaging technology, there
has been a growing interest in developing algorithms for
brain tumor segmentation in medical image analysis. Seg-
mentation of brain tumors in MRI has become a major topic
in the medical imaging field, aiding in diagnosis and treat-
ment. However, low efficiency, low accuracy, and poor ro-
bustness present challenges. As a result, numerous classic
medical image segmentation methods have been developed
domestically and internationally to address these issues(Zhu
and Shen 2019; Ramesh et al. 2021).

Traditional segmentation methods

Ahilan A proposed a multi-threshold segmentation method
based on optimization techniques to extract regions of in-
terest and compress DICOM images using an improved
lossless prediction algorithm(Ahilan et al. 2019). A S et
al. proposed an improved Sobel edge detection algorithm
with eight directions, which improved the edge detection
performance of brain tumor MRI images(AS and Gopalan
2022). Khosravanian et al. proposed a Fuzzy Kernel Level
Set (FKLS) algorithm based on fuzzy c-means, kernel map-
ping, and symmetry analysis for brain tumor image segmen-
tation(Khosravanian et al. 2022).The previously mentioned
methods, which are based on thresholding, region-based,
graph theory, edge detection, active contours, and model-
based medical image segmentation, were proposed rela-
tively early. They have demonstrated advantages in small-
scale private and older publicly available datasets but may
not effectively meet the increasing demands for the segmen-
tation of the latest clinical MRI brain tumor data.

Traditional machine learning methods

Saxena et al. introduced a brain tumor MRI image segmen-
tation method that employs a sliding window mechanism
and fuzzy c-means clustering(Saxena, Kumari, and Pattnaik
2021). Initially, the method preprocesses brain tumor MR
images, completes texture feature extraction and classifica-
tion, and then uses a sliding window mechanism to localize
tumor regions. Finally, the fuzzy clustering algorithm of c-
means is applied to remove erroneously classified windows,
resulting in brain tumor segmentation. Experimental results
indicate that this method exhibits comparable or superior ac-
curacy and Dice scores in brain tumor segmentation com-
pared to other existing methods, including deep learning-
based approaches.

Deep learning methods

In recent years, deep learning has shown remarkable poten-
tial in computer vision and has made significant advance-
ments in brain tumor segmentation. Wang et al. proposed
TransBTS, a novel brain tumor segmentation method based
on an encoder-decoder structure(Wang et al. 2021). The en-
coder utilizes 3D CNN to extract volumetric spatial features,
while the decoder employs the Transformer model with em-
bedded features for progressive upsampling and generating
tumor segmentation results. Liu et al. developed Swin Trans-
former, a layered Transformer based on the Shifted Win-
dow computation representation. Luu et al. introduced an ex-
tended nn-Unet-based brain tumor MRI image segmentation
method(Luu and Park 2021), which incorporates group nor-
malization and a larger Unet network, achieving first place
in the BraTS 2021 Brain Tumor Segmentation Challenge
Task 1: Brain Tumor Segmentation in mpMRI scans. Deep
learning-based methods have consistently emerged as win-
ners of the Brain Tumor Segmentation Challenge Task 1 at
prestigious MICCALI conferences in recent years(Jiang et al.
2020; Isensee et al. 2021; Hatamizadeh et al. 2021).



Proposed Solution

In this section, we will introduce Swin UNETR ++, as
shown in Figure 1.0ur model is optimized based on Swin
UETR(Hatamizadeh et al. 2021). Swin UNETR++ consists
of encoder, decoder and skip connections. The basic unit of
Swin-Unet is the Swin Transformer block(Liu et al. 2021).
The input to our model is 3D multi-modal MRI images with
4 channels. The Swin UNETR++ creates non-overlapping
patches of the input data and uses a patch partition layer to
create windows with a desired size for computing the self-
attention. The encoded feature representations in the Swin
transformer are fed to a CNN-decoder via skip connection
at multiple resolutions. Final segmentation output consists
of 3 output channels corresponding to ET, WT and TC sub-
regions.

Encoder

For the encoder, to transform the inputs into sequence em-
beddings, the medical images are split into nonoverlapping
patches with patch size of 2 x 2 x 2. By this partition ap-
proach, the feature dimension of each patch becomes to 2
x 2 x 2 x 4 = 32. Furthermore, a linear embedding layer is
applied to projected feature dimension into arbitrary dimen-
sion (represented as C). The transformed patch tokens pass
through several Swin Transformer blocks and patch merging
layers to generate the hierarchical feature representations.
Specifically, patch merging layer is responsible for down-
sampling and increasing dimension, and Swin Transformer
block is responsible for feature representation learning.

The self-attention is computed into nonoverlapping win-
dows that are created in the partitioning stage for efficient
token interaction modeling. Figure 2 shows the shifted win-
dowing mechanism for subsequent layers. Subsequently, in
subsequent layers of 1 and 1 + 1 in the encoder, the outputs
are calculated as

2l = W-MSA(LN(2'71)) + 271 )

2l = MLP(LN(2Y)) + 2! 2)
21— SW-MSA(LN(z")) + 2! 3)
St MLP(LN(élH)) 4 3lHt 4)

Here, W-MSA and SW-MSA are regular and window par-
titioning multi-head self-attention modules respectively 2
and 2+ denote the outputs of W-MSA and SW-MSA; MLP
and LN denote layer normalization and Multi-Layer Percep-
tron respectively. For efficient computation of the shifted
window mechanism, we leverage a 3D cyclic-shifting (Liu
et al. 2021) and compute self-attention according to

QKT
Vd

In which Q, K, V denote queries, keys, and values respec-
tively; d represents the size of the query and key.

Attention(Q, K, V) = Softmaz(
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Figure 2: Overview of the shifted windowing mechanism.
Note that 8 x 8 x 8 3D tokens and 4 x 4 x 4 window size are
illustrated.

Decoder

Swin UNETR++ has a U-shaped network design in which
the extracted feature representations of the encoder are used
in the decoder via skip connections at each resolution. At
eachstagei (¢ € {0,1,2,3,4}) in the encoder and the bottle-
neck (i = 5), the output feature representations are reshaped
into size 25 X 2E X gand fed into a residual block compris-
ing of two 3 x 3 x 3 convolutional layers that are normalized
by instance normalization layers. Subsequently, the resolu-
tion of the feature maps are increased by a factor of 2 using a
deconvolutional layer and the outputs are concatenated with
the outputs of the previous stage. The concatenated features
are then fed into another residual block as previously de-
scribed. The final segmentation outputs are computed by us-
inga 1 x 1 x 1 convolutional layer and a sigmoid activation
function.

Experiments
Dataset

As with most related work, we choose the BraTS 2021
dataset which comprises four modalities of MRI images -
T1, T2, Tlce and FLAIR from 2000 patients. The image
size is 240x240x155 which has been resampled to isotropic
1x1x1mm resolution, stemming from multiple clinical insti-
tutions with different imaging equipment.

As shown in Figure 3, BraTS 2021 contains 4 types of
segmentation labels: the blue area represents enhanced tu-
mor (ET), the green area represents edema tissue around
the tumor (ED), the red area represents necrotic tumor core
(NCR), and the black area represents background. These
four types of label combinations are divided into three types
of subregions: the whole tumor (WT) contains ET, ED, and
NCR, the tumor core (TC) contains ET and NCR, and the en-
hanced tumor (ET) area corresponds to the cyan, magenta,
and yellow areas, respectively.

Implementation Details

We implement our method using Pytorch 1.10, MONAI
0.9.0 and Medpy 0.4.0, which is evaluated using the 5-fold
cross-validation. To save computing resources, we opt to
fine-tune the swin unetr pre-trained models for 30 epochs
using a single NVIDIA A100 40GB PCIe GPU with input 4-
channel image size 128x128x128x4 for 472 iterations. Fur-



Figure 3: Glioma subregions with its corresponding labels

thermore, we utilize AdamW optimizer with learning rate
of 1e~* and weight decay of 1e~5, cosine annealing restart
with warm up to adjust learning rate and sigmoid activation
function.

Evaluations Metrics

In order to evaluate the performance of the models, we
adopt Dice Similarity Coefficient(DSC),Jaccard Similarity
Coefficient(JSC),Sensitivity,Specificity,and Positive Predic-
tive Value(PPV) as follows.

DSC measures the spatial overlap between voxels of pre-
dicted segmentations and volumetric ground truths. Similar
to DSC, JSC also reflects the spatial similarity of two vol-
umes, yet is defined from a different perspective.

20Y NY
=J——J— (6)
Y[+ [Y]
YNY
YUY

where, Y and Y denote the ground truths and predicted seg-
mentations, respectively.

Sensitivity represents the proportion of predicted positive
tumor labels to true tumor labels.

TP g
P TP+FN ®)

where, TP, P, and FN represent the number of true positive
examples, the number of correctly predicted positive exam-
ples, and the number of incorrectly predicted negative exam-
ples,respectively.

Specificity indicates the ratio of predicted positive back-
ground labels to true background labels.

TN
N  TN+FP ©)

where, TN, N and FP stand for the number of correctly pre-
dicted negative examples, the number of true negative exam-
ples, and the number of incorrectly predicted positive exam-
ples, respectively.

PPV represents the proportion of true positive cases to all
positive cases.

Sensitivity =

Specificity =

TP
PPV=——"+— 1
v TP + FP (10)
where, TP and FP symbolize the number of correctly pre-
dicted positive examples and the number of incorrectly pre-

dicted positive examples,respectively.

Loss Function

We leverage the soft Dice loss function calculated voxel-
wise(Milletari, Navab, and Ahmadi 2016).

J I
2 LY
Loss(G,Y) = 1- 23" — 2=t Gty gy
S g i G+ Y

where, G, Y, I, 1, Y; ;, and G; ; denote ground truth, pre-
dicted segmentation, the number of voxels, the number of
classes, the output probability of class j on voxel i, and the
true label in the form of one-hot encoding, respectively.

Quantitative Evaluation

The experimental results of the 5-fold cross-validation are
presented in Table 1.Figures 5 to 7 depict the trends of Dice,
Sensitivity, and Specificity scores over 30 epochs, respec-
tively.All evaluation metrics have been rounded to three dec-
imal places.The Dice Similarity Coefficient (DSC) measures
the similarity between the predicted and ground truth seg-
mentations. The Jaccard Similarity Coefficient (JSC) quan-
tifies the overlap between the predicted and ground truth
segmentations. Sensitivity represents the ability to correctly
identify positive cases, while specificity represents the abil-
ity to correctly identify negative cases. Positive Predictive
Value (PPV) denotes the proportion of correctly predicted
positive cases. The tumor core region is referred to as TC,
the whole tumor region as WT, and the enhancing tumor re-
gion as ET.

Regions

Mgtrics WI ET ave
DSC 0912 0927 0.876 0.905
JSC 0.838 0.864 0.78 0.827
Sensitivity  0.906 092  0.879 0.902
Specificity 1 0.999 1 1
PPV 0.943 0944 0902 0.93

Table 1: Experimental Results of 5-Fold Cross-Validation

To comprehensively evaluate the performance of the Swin
UNETR++ model, we conduct a benchmark comparison
with the TransBTS model, which has emerged as the winner
of the BraTS Multimodal Brain Tumor Segmentation Chal-
lenge in recent years. The results of this comparison are pre-
sented in Table Table 2.The optimal results are highlighted
in bold.Notably, the benchmark results demonstrate the su-
perior performance of the proposed Swin UNETR++ model
compared to the TransBTS model in terms of the three sub-
regions of brain tumors. This improved performance can be
attributed to the effective incorporation of multi-scale con-
text information through the self-attention module embed-
ded in the hierarchical encoder of Swin UNETR++, enabling
accurate modeling of long-range dependencies.

Qualitative Evaluation

As manifested in Figure 4, we employs the Swin UNETR++
with fold = 1 to perform inference on the BraTS 2021 train-
ing set. As an illustrative example, we select the 73rd slice of
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Figure 4: The segmentation results for brain tumors
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Figure 5: The Dice results for the 5-fold cross-validation
evaluation

Our model TranBTS

DSC TC WT ET avg TC WT ET avg

Fold0 0.902 092 0.857 0.893 0.897 0910 0.856 0.883
Fold1 0917 0931 089 0913 0903 0919 0.885 0.902
Fold2 0.912 0.929 0.881 0.907 0.898 0.903 0.866 0.889
Fold3 0.913 0.925 0.877 0.905 0.893 0915 0.867 0.892
Fold4 0.912 0.927 0.876 0.905 0.893 0915 0.867 0.892
avg 0912 0927 0876 0905 0.898 0911 0.868 0.891

Table 2: Comparison of 5-Fold Cross-Validation Dice Simi-
larity Coefficients

the cross-sectional section to display the input images, real
labels, and output segmentation results of the four modali-
ties. It is prone to observe that compared to the ground truth,
our approach demonstrates a better overall segmentation ef-
fect on brain tumors, with only a few minor imperfections.

Conclusion

In this paper, we present the Swin UNETR++ model based
on multi-modal magnetic resonance images, which im-
proves the effectiveness of brain tumor segmentation. A
body of research trials were conducted to evaluate the per-
formance of the proposed method, achieving state-of-the-art
performance on BraTS 2021.

In the future, the diagnosis of tumor lesions will be per-
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Figure 6: The Sensitivity results for the 5-fold cross-
validation evaluation

0.99980

0.99975

0.99970 4

0.99965

Specificity

0.99960

0.99955

0.99950

0.99945

T T T T T T
0 5 10 15 20 25 30
epoch

Figure 7: The Specificity results for the 5-fold cross-
validation evaluation

formed with segmented images for computer-aided diagno-
sis. Future research will apply the proposed method to multi-
house datasets, including real-time data, to evaluate the gen-
eralization.
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